

Lecture Notes in Computer Science 3511
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Uffe Kock Wiil (Ed.)

Metainformatics

International Symposium, MIS 2004
Salzburg, Austria, September 15-18, 2004
Revised Selected Papers

13

Volume Editor

Uffe Kock Wiil
University of Southern Denmark
Mærsk Mc-Kinney Møller Institute
Campusvej 55, 5230 Odense M, Denmark
E-mail: ukwiil@mip.sdu.dk

Library of Congress Control Number: 2005928378

CR Subject Classification (1998): H.4, H.5.1, D.2, H.5.4, D.1, I.2, K.4, I.7

ISSN 0302-9743
ISBN-10 3-540-27328-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27328-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11518358 06/3142 5 4 3 2 1 0

Preface

This volume contains the final proceedings of the 2004 Metainformatics Sympo-
sium (MIS 2004). The event was held during 15–18 September 2004 in Salzburg,
Austria at Salzburg Research.

MIS is an annual event focusing on finding common ground shared by re-
searchers and practitioners in many different computer science areas who may
use similar methods to achieve different ends. The goal is to find useful abstrac-
tions, notations, analytical frameworks, formalisms, and systems that improve
our understanding of the underlying structures of various disciplines and families
of systems within computer science. Ideally these constructs should have useful-
ness in conveying knowledge and understanding across disciplinary boundaries.

The proceedings of previous MIS events were also published by Springer in
the Lecture Notes in Computer Science series: LNCS 3002 (2003), LNCS 2641
(2002), LNCS 2266 (2001), and LNCS 1903 (2000).

As with previous events in the MIS series, MIS 2004 attracted quality papers
and brought together researchers from many different fields within computer sci-
ence. We experienced interesting presentations and lively discussions in Salzburg.
I hope that you will find the papers contained in this volume as interesting as
the other members of the Program Committee and I have.

This volume would not have been possible without the help and assistance
of many people. In particular, I would like to acknowledge the assistance of the
Springer editors, Anna Kramer and Christine Günther, and the Executive Editor
of the LNCS series, Alfred Hofmann.

March 2005 Uffe Kock Wiil

Organization

Organizing Committee

Siegfried Reich (Salzburgh Research, Austria)
Uffe K. Wiil (University of Southern Denmark, Odense, Denmark)
Peter J. Nürnberg (Aalborg University Esbjerg, Denmark)
David L. Hicks (Aalborg University Esbjerg, Denmark)

Program Committee

Chair: Uffe K. Wiil (University of Southern Denmark, Odense, Denmark)

Members: Kenneth M. Anderson (University of Colorado, Boulder, USA)
Niels Olof Bouvin (University of Aarhus, Denmark)
David L. Hicks (Aalborg University Esbjerg, Denmark)
Peter King (University of Manitoba, Winnipeg, Canada)
David E. Millard (University of Southampton, UK)
Peter J. Nürnberg (Aalborg University Esbjerg, Denmark)
Siegfried Reich (Salzburgh Research, Austria)
Jessica Rubart (Fraunhofer IPSI, Darmstadt, Germany)
Manolis Tzagarakis (University of Patras, Greece)
Klaus Tochtermann (Know-Center, Graz, Austria)
Weigang Wang (University of Manchester, UK)

Sponsoring Institutions

Salzburg Research, Austria
Aalborg University Esbjerg, Denmark
University of Southern Denmark, Odense, Denmark

Table of Contents

Computer Aided Composition

Supporting Tools for Designing-by-Contract in Component-Based
Applications

Antonio Coronato, Antonio d’Acierno, Diego D’Ambrosio,
Giuseppe De Pietro . 1

Access Rights – The Keys to Cooperative Work/Learning
Thorsten Hampel . 14

Flexible Notifications and Task Models for Cooperative Work
Management

Jessica Rubart, Helge Richter . 32

Managing Ontological Complexity: A Case Study
Peter J. Nürnberg, Svetlana Krestova . 42

Looking Beyond Computer Applications: Investigating Rich Structures
Claus Atzenbeck, Peter J. Nürnberg . 51

Towards a Generic Building Block for Component-Based Open
Hypermedia Systems

Omer Ishag Eldai, Peter J. Nürnberg, Uffe K. Wiil,
David L. Hicks . 66

Applying Information Visualisation Techniques to Spatial Hypertext
Tools

Kirstin Lyon, Peter J. Nürnberg . 85

An Agenda for Structural Computing Research
Uffe K. Wiil, David L. Hicks, Peter J. Nürnberg 94

Assessing the Impacts of Open Hypermedia Problems on Structural
Computing

Nikos Karousos, Nikos Tsirakis . 108

Structural Engineering: Processes and Tools for Developing
Component-Based Open Hypermedia Systems

Michail Vaitis, Manolis Tzagarakis, George Gkotsis,
Panagiotis Blachogeorgakopoulos . 113

VIII Table of Contents

A Semantic Representation for Domain-Specific Patterns
Susana Montero, Paloma Dı́az, Ignacio Aedo . 129

Describing Use Cases with Activity Charts
Jesús M. Almendros-Jiménez, Luis Iribarne . 141

Spatial Constraint Modelling with a GIS Extension of UML and OCL:
Application to Agricultural Information Systems

François Pinet, Myoung-Ah Kang, Frédéric Vigier 160

Location and Tracking Services for a Meta-UbiComp Environment
Antonio Coronato, Giuseppe De Pietro . 179

Applying Structural Computing Paradigms to Domain Analysis – By
Example of Knowledge Transfer in Higher Education

Armin Ulbrich, Klaus Tochtermann . 192

Content Engineering: Bridging the Gap Between Content Creation and
Consumption

Siegfried Reich . 206

Blog Perspectives – Services: Amoeba Versus Whale
Frank Wagner . 212

Author Index . 221

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 1 – 13, 2004.
© Springer-Verlag Berlin Heidelberg 2005

Supporting Tools for Designing-By-Contract
in Component-Based Applications

Antonio Coronato1, Antonio d’Acierno2, Diego D’Ambrosio3,
 and Giuseppe De Pietro3

1 DRR-CNR, Via Castellino 111, 80131 Napoli, Italy
coronato.a@ na.drr.cnr.it

2 ISA-CNR, Via Roma, 52 Avellino, Italy
dacierno.a@isa.cnr.it

3 ICAR-CNR, Via Castellino 111, 80131 Napoli, Italy
depietro.g@cps.na.cnr.it

Abstract. This paper deals with the modeling and the automatic implementation of
constraints in component based applications. Constraints have been assuming an
ever more relevant role in modeling distributed systems as long as business rules
implementation, design-by-contract practice, and fault-tolerance requirements are
concerned. Nevertheless, component developers are not sufficiently supported by
existing tools to model and implement such features. In this paper, we propose a set
of tools that enable developers both to model component constraints and to
automatically generate component skeletons that already implement such
constraints.

1 Introduction

In the last decade the nature of software systems has remarkably changed. In
particular, the widespread diffusion of computer networks, as well as the constant
growth of information systems responsibilities has led to new software architectures,
no more single, huge, and strongly centralized systems, but highly-distributed ones.

Software distribution has initially been realized by decomposing software systems
in modules, which implemented specific functions. They were able to run on distinct
computers and adopted the remote procedure call paradigm as basis communication
mechanism. More recently, software distribution has taken place by implementing
and releasing cooperating software artifacts called components. A software
component is a software element that can independently be deployed and composed
without modification to support enterprise business processes [1].

A key point for the success of component-based software development practice has
just been the possibility of having a more efficient and a relative easier software
reuse. The wide diffusion of component-based architectures as a distributed system
paradigm has also been pushed up by the emerging of middleware technologies like
CORBA, DCOM, and more recently Web Services, which offer several facilities for
developing and deploying cooperating distributed objects over heterogeneus
platforms.

2 A. Coronato et al.

In this work we focus on CORBA platforms. In particular, we are interested in
developing new CORBA components applying a design-by-contract technique.

The design-by-contract method, which was primarily proposed by Bertrand Meyer
in [13], is now a well established tool for developing reliable software systems. Such
a technique fundamentally relies on the simple and compelling idea of designing
systems as a set of cooperating abstract boxes that achieve their common goal by
verifying specified contracts. A contract establishes what each participant of a
collaboration has to do in order to get the promised results [6]. Contracts are
implemented just as a set of constraints1. Design-by-contract has recently been
adopted by Cheesman and Daniels in their component-oriented modeling process [6].
Such a process specifies workflows and activities that a designer has to perform in
order to get complete component specifications. A complete component specification
includes i) the component interface; ii) the inter-components collaborations; and iii) a
set of contracts (constraints) as pre-conditions, post-conditions, and invariants that
apply to the system components.

To build new CORBA components, developers model component architecture via
the Unified Modeling Language (UML) [4]. Then, they model components interfaces
by using the standard Interface Definition Language (IDL) [11]. Next, such interfaces
are compiled by idl compilers to obtain component skeletons. Component skeletons
are “empty” components that already integrate inter-component communication
mechanisms, but do not have business logic. Finally, developers fill the component
skeletons by adding the component business logic. It is worth to note that UML
enables designers to produce low-fidelity models to capture high-level system
characteristics in the early design phase, as well as high-fidelity models to specify
low-level system details in the late design phase. The fidelity is to be intended as the
measure of the correspondence between the model and the final system [12].
However, several component characteristics, like relationships and constraints, which
can be modeled via UML, are not automatically implemented into component
skeletons. This happens because component skeletons are automatically generated by
idl compilers, which process idl models, but IDL doesn’t provide support for
modeling such characteristics. Indeed, IDL was devised to model only interfaces. It
doesn’t have to deal with structural features. As a consequence, component skeletons
do not keep any track of several structural characteristics although they have been
specified in the UML models. We can conclude that the component skeletons fidelity
is quite low, where we define the component skeleton fidelity as the measure of how
close a component skeleton is to its final implementation.

The target of this research activity is to provide tools able to automatically produce
skeletons that already implement structural characteristics as invariants, pre-
conditions, post-conditions, and guard conditions. This assures a higher degree of
component skeleton fidelity. Moreover, this makes the implementation phase less
time consuming and reduces development costs. In addition, it also reduces software
faults by having reduced the manual programming impact.

1 In this paper, the words constraint and contract are used as synonymous. However, it’s worth

noting that the term contract has a narrow semantic with respect to the term constraint.

 Supporting Tools for Designing-By-Contract in Component-Based Applications 3

In this paper, in section 2 we briefly report some motivations and related work. In
section 3 we describe the proposed tools. In particular, we present i) the Constraint
Description Language (CDL), which is a modeling language derived from the
standard OCL [3]; ii) the Component Constraint Generator (CoCoGen), which is a
tool able to process textual CDL constraint models and to automatically implement
such constraints in enhanced component skeletons; and iii) the Component Constraint
Modeler (CoCoMod), which is a visual UML-based modeling tool for specifying
component interfaces and constraints; it is also able to automatically generate both
IDL and CDL models. Sections 4 deals with a case study and presents the developing
process. Section 5 concludes the paper and reports some directions for future work.

2 Motivations and Related Work

Modeling and implementation of constraints is a need for designers and developers.
We have already cited the design-by-contract technique and its application in the
component development process proposed by Cheesman and Daniels. There are
others developing processes that use contracts in component based applications.
Catalysis is just a further example [7]. However, contracts are used also in other
specific activities. Indeed, designers can effectively model enterprise business rules as
constraints [2]. In [19], a process for implementing collaborations among distributed
components is proposed; such a process relies on the use of constraints. In [18], a
technique for isolating faults is presented; this technique requires the insertion of
contracts in the source code. Faults are isolated into the bundle of executed software
instructions grouped by the last verified contract, and the first violated one.

Several examples of programming languages and tools, which offer facilities to
support constraints, are described in literature. Eiffel [5] and Turing [16] are two
relevant, constraint-oriented, programming languages. In [14], the Annotation
PreProcessor (APP) tool for C programs is presented. In such a case, invariant
conditions, pre-conditions, and post-conditions are formalized as comment lines
directly in the source code; then, such “comment lines” are processed by a pre-
compiler tool that translates the specified constraints into source code. The same
approach is followed in [20] for the Java programming language. However, an
important limit for existing tools, in our opinion, is that constraints have to be
specified directly in the source code, so that the specification of constraints can take
place only in the late implementation phase.

Such considerations can make easily understandable the need of having
methodologies, processes, and tools able to support designers and developers who are
willing of taking care of software constraints and logic assertions, possibly already in
the design phase and without concerning about the implementation details.
Unfortunately, current CORBA platforms do not provide any support for that as
clearly denounced in [15].

In this paper, we describe an integrated set of tools able to assist designers both in
modeling contracts in CORBA components and to automatically generate the proper
source code. However, we do not define any new programming language, but we

4 A. Coronato et al.

provide a visual UML-based environment for specifying component interfaces and
constraints. Finally, it’s worth to note that we have extended the typologies of
constraints. In particular, our tools enable to specify guard conditions and some inter-
component relationships as constraints. For all such constraints, facilities that
automatically generate the equivalent source code are provided.

3 The Proposed Tools

The use of the tools in the proposed approach is shown in figure 1. Designers use
CoCoMod for producing UML models of components that describes both interfaces
and constraints. CoCoMod automatically generates textual IDL and CDL models.
Next, from CoCoMod, designers can run the regular idl compiler and successively the
CoCoGen tool that realizes enhanced component skeletons.

Fig. 1. High level architectural view

The Constraint Description Language

The modeling language that we defined to formalize constraints is the Constraint
Description Language (CDL). This is basically derived from the standard OCL and
slightly adapted to component architecture features.

The original idea was to adopt the OCL as is but, on one hand, we experienced that
only a subset of OCL expressions can automatically be implemented by generation
tools. Indeed, because OCL is a declarative language, it is difficult to define generic
implementation patterns for some OCL expressions. On the another hand, we have
found useful to provide support for modeling guard conditions, which enables
designers to specify some kinds of business rules, and for inter-components
relationships, which are not supported by the standard IDL. The current version of
OCL doesn’t provide direct support for that, whereas the forthcoming version will
take guard conditions into account as reported in the last Request for Proposal [21].
We have also found useful to have mechanisms for specifying state changes or

IDL
Models

regular
skeletons

idl
compiler

CoCoGen
Tool

CoCoMod
Tool enhanced

skeletons

CDL
Models

IDL
Models

regular
skeletons

idl
compiler

CoCoGen
Tool

CoCoMod
Tool enhanced

skeletons

CDL
Models

 Supporting Tools for Designing-By-Contract in Component-Based Applications 5

forcing the execution of operations once a condition is satisfied. This facility cannot
be supported by OCL that is defined to be a side-effect free language.

These considerations have suggested the introduction of a new language, the CDL,
which has been thought to be as close as possible to OCL; i.e. CDL syntax is almost
the same as OCL. It also shares the same general properties, but CDL has also been
devised to provide support for the automatic implementation of constraints in
component based applications.

CDL (as well as OCL) is a formal language that remains easy to read and write
because it doesn’t rely on particularly complex mathematical constructs. It is not a
programming language; therefore, it is not possible to write program logic. As OCL,
it is a typed language, so that each expression has a type and, to be well formed, a
CDL expression must conform to the type conformance rules of the language. Finally,
as a specification language, all implementation issues are out of scope and cannot be
expressed in CDL, but it enables designers to produce textual models, which can
easily be processed by automatic tools to generate source code.

A brief description of CDL and OCL keywords is reported in table 1. The
keywords supported by OCL and not supported by CDL indicates the characteristics
that can not be automatically implemented by the current version of the tools
described in the next sections.

It is worth to note that constraints are still specified via a declarative approach.
This enables designers to model rules by abstracting away from any implementation
choice. By this way, designers continue to work without the concern of
implementation details.

Table 1. The CDL Language keywords

Keyword Description OCL

Context This keyword indicates the class or the operation to which the rule is
referred to

INV This keyword indicates an invariant condition
PRE This keyword indicates a pre condition
POST This keyword indicates a post condition
GUARD This keyword indicates a guard waiting for a condition
ASSOCIATION This keyword indicates an association between two classes
TOWARD This keyword indicates the end point of an association
AGGREGATION This keyword indicates an aggregation between two classes
AGGREGATE This keyword indicates an aggregation between two classes.
AGGREGATEDTO This keyword indicates what is the aggregated object in an

aggregation

COMPOSITION This keyword indicates a composition between two classes
COMPOSE This keyword indicates what is the composed object in a composition
COMPOSED This keyword indicates what are the composing objects in a

composition

MULTIPLICITY This keyword indicates the multiplicity of a relation
SELF This keyword indicates the current instance of a class
EXECUTE This keyword indicates an operation to execute
@PRE This keyword indicates the previous value of a variable

6 A. Coronato et al.

The Component Constraint Generator

CoCoGen is a generation tool that processes CDL textual models and then enhances
the component skeletons generated by a regular IDL compiler. The tool is dependent
from the target platform, i.e. a specific CORBA platform needs a specific constraint
generator. Currently, CoCoGen supports two CORBA platforms: CORBA TAO [9],
which is an open CORBA platform of the Washington University; and the Java
CORBA ORB [8], which is a free CORBA compliant platform distributed with the
J2SE environment.

CoCoGen architecture is shown in figure 2. It consists of the following main
elements:

• Coordinator – This is the main thread that coordinates the processing
phases;

• Parser – This module is in charge of analyzing CDL models and
generating constraints data structures;

• Processor – This component implements constraints in the target
component skeleton;

• Scheduler – This module coordinates the implementation of constraints,
which needs proper nesting operations in the component skeletons.

1
managed_by

*
managed

Coordinator

+ activeTasks () : void

Parser

- fileName : java.lang.String

+ findConstraints () : ConstraintListManager

ConstraintListManager

+
+
+
+

addInvariant (Constraint br)
addGuard (Constraint br)
addPrecondition (Constraint br)
addPostConditoin (Constraint br)

: void
: void
: void
: void

Scheduler

+ schedule (ConstraintListManager lisMgr) : int

ConstraintList

- numberOfElemenent : int

+
+

addBusinessRule (Constraint br)
readBusinessRule ()

: void
: Constraint

Processor

+
+
+
+

implementInv (Constraint br, NewSkeleton skeleton)
implementPre (Constraint br, NewSkeleton skeleton)
implementPost (Constraint br, NewSkeleton skeleton)
implementGuard (Constraint br, NewSkeleton skeleton)

: int
: int
: int
: int

Constraint

-
-
-

context
condition
type

: java.lang.String
: java.lang.String
: java.lang.String

+
+
+
+
+
+

setContext (java.lang.String context)
getContext ()
setType (java.lang.String type)
getType ()
setCondition (java.lang.String condition)
getCondition ()

: void
: java.lang.String
: void
: java.lang.String
: void
: java.lang.String

NewSkeleton

+
+
+
+

newSkeleton (java.lang.String fileName)
read ()
write (java.lang.String string)
save (java.lang.String fileName)

: void
: java.lang.String
: void
: int

Fig. 2. CoCoGen architecture

 Supporting Tools for Designing-By-Contract in Component-Based Applications 7

It is worth to note that the Processor is the only component which is platform
specific. In other words, each CORBA platform requires a specific Processor.

CoCoGen operates in two phases. During the first phase, the Parser analyzes the
input CDL models and then builds some data structures that are used during the
second phase by the Scheduler. The Scheduler drives the Implementer, which
executes specific implementation patterns depending on the type of the constraint.

Implementation patterns specify how to implement invariant, pre, post, and guard
conditions in component-based applications. They have been defined in previous
work [17].

The Component Constraint Modeler

CoCoMod is a visual environment that enables designers to model both component
interfaces and constraints. Interfaces are modeled as UML classes, whereas
constraints are inserted as properties of the corresponding interface and expressed in
CDL. From these graphical models, CoCoMod generates both IDL interface models
and CDL constraint models. These textual models are platform independent. After
that, from this tool, the developer can invoke the execution of a platform-specific IDL
compiler. Two choices are currently available, tao_idl and idlj for the two distinct
supported platforms (CORBA TAO and Java CORBA ORB). This step generates the
regular component skeletons for the selected CORBA platform. Next, the designer
invokes the execution of the CoCoGen tool that processes the CDL models so far
generated, and then inserts in the regular component skeletons the proper source code
for implementing constraints. The result consists of a set of enhanced component
skeletons that already implement constraints.

 (a) (b)

Fig. 3. CoCoMod functionalities

8 A. Coronato et al.

Figure 3 shows some functionalities of the CoCoMod tool. In particular, figure 3.a
presents the workspace panel, from which designers can create project modules
(packages) and interfaces. Figure 3.b shows the property panel for an interface. From
this panel, it is possible to add not only interface operations and attributes, but also
constraints as invariants, pre-conditions, post-conditions, and guards.

4 Case Study

This section presents a simple case study in order to show an application of the
implemented tools. We focus on a system that must offer cataloguing and exposing
functions for relics owned by an archeological museum.

Relics are classified by age, epoch, style, and type. A cataloguing card, which
includes technical descriptions and pictures, is associated to each relic. Relics are also
periodically verified in order to establish whether to restore them or not.
Verifications, as well as restorations, are performed in specialized laboratories. Any
time a relic is restored or verified, a verification timeout is set to establish how long to
wait before having the next verification. Such a timeout must always range between
maximum and minimum values (suppose 6 months and 24 months respectively)
established for relics classes by generic criteria.

Museums can lend/borrow relics to/from other museums in order to organize
special events. Relics can be lent only if they are available (not on
verification/restoration). Likewise, relics can be verified/restored only if the
verification timeout is expired and they have not been lent (they are currently
available) to other museums.

In the following, the development activities are described.

Modeling the system

As shown in figure 3.a, three new components are designed: Relic, Museum,
CataloguingCard. Relic is the component containing relic objects, which are owned
by a museum. CataloguingCard stores information about the associated relic and its
operations of verification, restoration, and lending.

A relic can be in the following state:

• Verifying – The relic is on verification in order to be restored
• Restoration – The relic is on restoration
• Lending – The relic has been lent
• Available – The relic is available in the museum

It has also been supposed to have a background procedure that periodically checks
the verification timeouts and sets the toVerify attribute when the timeout has expired.
The next_verification attribute of CatalougingCard realizes the verification timeout,
which memorizes the number of months to wait for the next verification.

We can assume the following business rules and constraints:
• Business Rule 1 – Each relic must be periodically verified

 Supporting Tools for Designing-By-Contract in Component-Based Applications 9

o Constraint 1.1 – Before having the next verification, one must wait for at
least 6 months and no more than 24 months.

o Constraint 1.2 – A verification can be performed only if the relic is
available and its verification timeout has expired.

• Business Rule 2 – Relics can be lent to other museums.
o Constraint 2.1 – A relic can be lent only if available

-- IDL model

module CaseStudy {
 struct Date {
 short day;
 short month;
 long year;
 };

 interface Relic
 {
 attribute string name;
 attribute string type;
 attribute string style;
 attribute long age;
 };

 interface CataloguingCard
 {
 attribute long cardID;
 attribute string description;
 attribute string picture;
 attribute boolean toVerify;
 attribute string relicState;
 attribute long next_verification;
 attribute Date last_verification;

 void verify();
 void restore();
 void lend();
 void take_back();
 void show_card();
 };

 interface Museum
 {
 attribute string name;
 attribute string address;
 attribute string city;

 void plan_event();
 void add_relic();
 };
};

Fig. 4. IDL interfaces for the system components

10 A. Coronato et al.

-- CDL models

package CaseStudy ;

context CataloguingCard
inv: ((self.next_verification >= 6) and (self.next_verification <= 24))

context CataloguingCard
guard: if ((self.toVerify == true) and (self.relicState == “available”))
 then

 execute self.verify()
 endif

context CataloguingCard::verify(): void
pre: ((self.relicState == “available”) and (self.toVerify == true))

context CataloguingCard::verify(): void
post: self.relicState = “verifying”

context CataloguingCard::restore(): void
pre: self.relicState == “available”

context CataloguingCard::restore(): void
post: self.relicState = “restoring”

context CataloguingCard::lend(): void
pre: self.relicState == “available”

context CataloguingCard::lend(): void
post: self.relicState = “lent”

context CataloguingCard::take_back(): void
post: self.relicState = “available”

endpackage;

Fig. 5. Constraint model

A couple of pre and post conditions are specified for the verify operation. In
particular, the pre-condition verifies constraint 1.2, whereas the post-condition forces
a new state for the relicState attribute. In order to implement all the previous business
rules and constraints, further conditions have been formalized. Indeed, a guard
condition, which executes the verify operation any time the executing condition gets
true, has been inserted in order to implement business rule 1. Rule 2 affects the lend
method, which can be executed only if the relic is available. Moreover, the lend
operation must set the relic state to lending. Similar constraints must hold for restore
and take_back operations. In addition, an invariant constraint has been set over the
next_verification attribute in order to assure correct updates.

After having completed the modeling activity, CoCoMod generates the IDL model
reported in figure 4 and the CDL model shown in figure 5.

From now on, to keep the example simple, we focus on the CataloguingCard
component only.

 Supporting Tools for Designing-By-Contract in Component-Based Applications 11

Compiling IDL interfaces

This activity produces preliminary skeletons of components. We decided to
implement components for the Java CORBA ORB platform. The idlj compiler is
launched from the CoCoMod tool itself.

Generating components constraints
After having produced regular component skeletons, from CoCoMod we lauched the
CoCoGen post-processor tool, which modified the initial component skeletons in
order to implement constraints.

Figure 6 shows the resulting CataloguingCard component skeleton. Source code is
added accordingly with specific development patterns. All software lines added to the
original skeleton are shown as bold lines in the figure. However, to keep simple the
figure, we reported only few pieces of the component skeleton.

package CaseStudy;

public abstract class _CataloguingCardImplBase extends org.omg.CORBA.portable.ObjectImpl
 implements CaseStudy.CataloguingCard, org.omg.CORBA.portable.InvokeHandler
{

 switch (__method.intValue ())
 {

 case 11: // CaseStudy/CataloguingCard/_set_next_verification
 {
 int newNext_verification = in.read_long ();
 if ((newNext_verification >= 6) & (newNext_verification <= 24))
 {
 this.next_verification (newNext_verification);
 out = $rh.createReply();
 } else throw new org.omg.CORBA.UNKNOWN(“ operation impossible “);
 break;
 }

 case 14: // CaseStudy/CataloguingCard/verify
 {
 if ((this.relicState ().equals (“available”)) & (this.toVerify ()==true))
 {
 this.verify();
 this.relicState (“verifying”);
 out = $rh.createReply();
 } else throw new org.omg.CORBA.UNKNOWN(“ operation impossible “);
 break;
 }

Fig. 6. Enhanced component skeleton

12 A. Coronato et al.

Such a skeleton is now ready to be filled up with the business logic. This activity
must be manually performed by programmers, who, however, do not have to care
anymore about the implementation of constraints since it has been performed by the
CoCoGen tool.

5 Conclusions

Constraints can no more be neglected while modeling and building component
applications. We can also state that current components skeletons fidelity is quite low.
The possibility of having automatic tools able to produce component skeletons with
an higher degree of fidelity would have valuable effects in terms of development
time, development costs, software correctness, and so on. One way to improve the
component skeleton fidelity is given by automatically implementing component
constraints.

In this paper we proposed and integrated environment composed by two tools,
CoCoGen and CoCOMod. CoCoGen is a tool for generating constraints-related code
into component skeletons; for such an aim, we formalized implementation patterns for
invariants, pre-conditions, post conditions and guards. Our tool has been integrated in
an UML compliant visual environment (CoCoMod) that we built to enable designers
to visually define components interfaces and constraints, and to generate (for two
major CORBA platforms) skeletons that already implement constraints.

Regarding our work in progress, some enhancements are being considered. First,
we are extending CoCoMod with a graphic metaphor for modeling constraints, so that
CDL will become an internal language and will no longer directly be used by
software architects and developers. We are also considering other CORBA platforms
together with the possibility of extending CoCoGen to other middleware platforms,
such as RMI or SOAP.

References

[1] G. T. Heineman and W. T. Councill, “Component-Based Softwar Engineering”,
Addison-Wesley publishing, 2001.

[2] R. G. Ross, “The Business Rule Book”, Business Rule Solutions, 2nd Ed., 1997.
[3] J. Warmer and A. Kleppe, “The Object Constraint Language: Precise Modeling with

UML”, Addison-Wesley publishing, 1999.
[4] Hans-Erik Eriksson and Magnus Penker, “UML toolkit”, Wiley publishing.
[5] B. Meyer, “Object Oriented Construction”, Englewood Cliffs, NJ: Prentice-Hall, 1988.
[6] J. Cheesman and J. Daniels, “UML Components – A Simple Process for Specifying

Component-Based Software”, Addison-Wesley, 2003
[7] D.F. D’Souza and A.C. Wills, “Objects, Components, and Frameworks with UML: The

Catalysis Approach”, Addison-Wesley, 1999
[8] Sun Microsystems, “CORBA Technology and the Java2 Platform, Standard Edition”,

available at http://java.sun.com/j2se/1.4.2/docs/guide/corba/index.html
[9] http://www.cs.wustl.edu/~schmidt/TAO.html

[10] “ORBIX 2000 Tutorial”, available at http://www.iona.com/docs.

 Supporting Tools for Designing-By-Contract in Component-Based Applications 13

[11] ISO/IEC 14750 standard.
[12] N. Medidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins, “Modeling Software

Architectures in the Unified Modeling Language”, ACM Transactions on Software
Engineering and Methodology, Vol 1, N. 1, January 2002, Pages 2-57.

[13] B. Meyer, “Applying Design by contract”, IEEE Computer, October 1992, Pages 40-51.
[14] D. S. Rosenblum, “A Practical Approach to Programming with Assertion”, IEEE

transactions on Software Engineering, Vol. 21. No. 1, January 1995, Pages 19-31.
[15] J. M. Jézéquel and B. Meyer, “Design by contract: The Lessons of Ariane”, IEEE

Computer, January 1997.
[16] R. C. Holt and J. R. Cordy, “The Turing Programming Language”, Communication of

ACM, Vol. 31, No. 12, December 1988.
[17] A. Coronato, M. Cinquegrani, and G. De Pietro, “Adding Business Rules and Constraints

in Component Based Applications”, in proc. of the 2002 International Symposium on
Distributed Objects and Applications (DOA 2002), Irvine, California, USA - LNCS
2519.

[18] L. C. Briand, Y. Labiche, H. Sun, “Investigating the use of analysis contracts to support
fault isolation in object oriented code” ACM SIGSOFT Software Engineering Notes ,
Proceedings of the international symposium on Software testing and analysis, Volume
27 Issue 4.

[19] E. Cariu, A. Beugnard, and J. M. Jezequel, “An Architecture and a Process for
Implementing Distributed Collaborations”, in the proc. of the 6th Int. Enterprise
Distributed Object Computing conference (EDOC’02), IEEE Computer Society Press.

[20] R. Kramer, “iContract – the Java Design by Contract tool”, in proc. of International
Conference of Object Oriented Language and Systems (TOOLS 26, USA’98), IEEE
Computer Society Press.

[21] OMG, “Response to the UML 2.0 OCL RfP (ad/2000-09-03)”, Revised Submission,
Version 1.6, January 6, 2003

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 14 – 31, 2004.
© Springer-Verlag Berlin Heidelberg 2005

Access Rights –
The Keys to Cooperative Work/Learning

Thorsten Hampel

University of Paderborn, Computer Science, Heinz Nixdorf Institute,
Fürstenallee 11, 33102 Paderborn, Germany

hampel@uni-paderborn.de

Abstract. It is almost impossible to distinguish and keep track of all the coop-
erative systems and computer-supported learning environments currently avail-
able. One of the key characteristics of any cooperative system is the chosen ac-
cess rights model. Most systems of this sort employ a model that is specifically
tailored to one application area, e.g. a number of fixed roles. This article begins
by examining the different basic characteristics of access rights in the area of
cooperative work, and then goes on to present an open and flexible rights
model. In addition to covering classical access rights, this model enables rights
to be delegated to others and inherited contextually. The presented model is im-
plemented in the cooperative sTeam open-source work environment. Finally we
will present some evaluation results of using sTeam at various courses at our
university.

1 Introduction

Promising cooperative knowledge organization and modern computer-supported co-
operative learning are characterized by open and flexible forms of interpersonal coop-
eration and handling of material. One feature of such self-organized and open envi-
ronments is that they allow user groups to be created flexibly and on a self-organized
basis. Another is the need to make the handling of material (documents) adaptable to
this new and flexible form of cooperative work [12]. Access rights play a crucial role
here. They govern the assignment of objects to groups of users or learners, thus
clearly defining individual users and user groups. Such access structures must, how-
ever, be flexible enough to accommodate different cooperative processes between
users, e.g. the exchange of documents, without the need to explicitly make compli-
cated adjustments to the respective user rights.1

A key concept here is, for example, the context in which a document (object) is
embedded.

The process of assigning user rights must therefore be seen as an essential criterion
of a cooperative learning environment’s self-administration and self-organization.

1 In practice, many systems avoid the problem of having to make manual adjustments to a large

number of access rights when handling objects – e.g. moving a document – by choosing quite
open rights structures: “all users have full access rights”. However, such an approach can only
be considered a viable solution in limited use contexts.

 Access Rights – The Keys to Cooperative Work/Learning 15

Powerful mechanisms for assigning, transferring (delegating) and deriving access
rights from the use context are the basic elements of a learning environment that can
be largely organized and structured by the learners themselves – in other words, a
user-centred learning environment.

By the early 1990s, Ellis et al. had recognized that all existing CSCW system con-
cepts were overly complex and said nearly nothing about mapping the underlying
rights models to the user interface [5]. This conclusion must be qualified when ap-
plied to the situation today, but it continues to be valid: existing access rights models
of cooperative systems are either trivial or highly complex.

There are in addition a large number of generic models and concepts for adminis-
tering user rights in non-cooperative applications. Unfortunately, such models cannot
be applied to cases in which cooperative teaching and learning or work environments
are supported. This might be one of the reasons why in recent years few cooperative
learning environments have been equipped with powerful user rights models [24, p.
51]. The rights systems of cooperative environments can also be extremely complex.
Requirements with respect to clarity (comprehensibility) and suitability of the user
interface thus also acquire importance.2

Elaborated models of access rights are found in many systems, such as [2], [3], [4],
[9], [18] or [23].

The user rights model presented here is flexible and adaptable enough to cover the
whole range of cooperative knowledge organization processes. And it is designed to
minimize the complexity and effort involved in setting user rights. Key concepts here
are the specific right to delegate user rights, the inheritance of access rights and their
derivation from the context/environment of an object.

2 Access Rights – The Key to Cooperative Knowledge
 Organization

A general distinction should be made between authentication, i.e. logging on to a
system and thus securing a specific status depending on the respective user (“Who are
you?”, “Who said that?”), and authorization, i.e. checking access rights between
documents, objects and a person (“What are you allowed to do?”, “Who is allowed to
access this document?”).3 Conventionally, operating systems have made access rights
to a specific file dependent on membership of the relevant user group. In the UNIX
operating system, for example, the user’s or user group’s access rights to a file are
defined in terms of only three attributes: read, write, execute. These rights are evalu-
ated depending on a user’s membership of specific groups.

The classical model for assigning access rights to users and user groups (domains)
and objects is the Access Control List (ACL) as defined by [19], [20]. Lampson’s
notation consists of a set of objects O, a set of domains S and an access matrix A.

2 End users must be able both to easily recognize existing or refused access rights and to mod-

ify such rights (see [5]).
3 Henceforth, the terms “access rights” and “access control” are used synonymously.

16 T. Hampel

Objects are the system’s objects/files, access to which is protected, e.g. the material in
cooperative knowledge spaces. The definition of domain includes all entities, e.g.
users or user groups that are assigned access rights to objects by the access function f
over the matrix A. Instead of “domain”, Shen and Dewan use the term “subject” S, i.e.
an entity that wishes to have access to an object [24, p. 52ff.]. Analogously, we use
below a tripel (S, O, A) to describe the security status of the model.

The access matrix A creates a relation between objects and subjects, i.e. users and
groups. Each element of the matrix specifies via a set of access rights R (often imple-
mented by a bit string) which access types r1,..,rn exist between S and O, e.g. read,
write, delete. These rights specify the access of a user or a group to the relevant ob-
ject. In the literature, a combination of such access rights is called a “view”.

The number of possible rights within a view varies considerably from one system
to another. Some systems use a very large number of individual rights in order to be
able to influence every aspect of cooperative work by a corresponding right (typically
systems providing document-management functions). Other systems manage with
only a few access rights, which are more general in nature (e.g. systems that primarily
provide synchronous cooperation support).4

The concept of cooperative knowledge spaces5 presented here and implemented in
sTeam (see [12]). can be considered as belonging to the second group of systems:
those with a small number of access rights. In a cooperative knowledge space, not
every option (action) is controlled by its own access right. A large number of access
rights can, for example, be subsumed under the basic rights read, write (delete), exe-
cute, move, insert and annotate.

If we now consider the columns of the matrix, we find specified for each object, in
the form of a list, the subjects that have access to that object, and thus the users and
user groups (or roles) that are allowed access to the object. Each object is thus as-
signed an Access Control List (ACL).

This enables a function f to be easily defined and implemented, which yields for
each user or user group u,g ∈ S and each object o ∈ O, depending on the set of access
rights ri ∈ R, the values “allowed” or “denied”:

 },{: deniedallowedROSf →××

 ,..},,{ deletewritereadR =

 }Role2,..Role1,Group2,..,Group1,User3,..,User2,1,U{ serS =

 }obj3,..obj2,obj1,{=O (1)

It can thus be determined for every access type ri ∈ R to what extent a user u ∈ S or a

group g ∈ S has the access right ri ∈ R (e.g. read) to the object o ∈ O. In the above case,
the access function f checks whether there is an element ri for the user u in the ACL of
the object o:

4 Of course, the latter, with their limited number and relatively close coupling of participants in

a cooperative session, do not require such a complex system of rights as typical asynchronous
systems.

5 For the concept of cooperative knowledge spaces see [11] and [12].

 Access Rights – The Keys to Cooperative Work/Learning 17

 ∉
∈

=
rforACLoudenied

rforACLouallowed
rouf

.if,

.if,
),,(

 (2)

The presented concept provides for each object the basic rights read, write, delete

(i.e. write access), move, execute, insert6 and annotate as well as the trans-
fer/delegation of rights.

The delegation of rights is an extension of the administration right concept, as pro-
posed by [22, p. 262].7 This right allows the explicit modification of an ACL and is
thus a first important step towards decentralized administration.

The right to transfer access rights enables cooperative structures to be imple-
mented, in particular making material available to co-users. Here, either a document is
made fully available to the cooperation partner (transfer of administration of the
document) or merely the right to set access rights is given (a document remains in the
possession of the user, an individual user or group of users merely being given the
right to assign arbitrary access rights).

3 Inheriting Access Rights

In daily practice, authorizations and rights are a field that is both dynamic and at the
same time characterized by social laws and norms. We consider it quite natural, then,
that material can, when being passed from one person to another, adapt its status in a
number of ways to the respective use context, the actors or the place. For instance, an
exam paper changes its status from being a highly sensitive document, for the eyes of
the lecturer only, before the examination to being a publicly available document that
can be freely discussed and annotated after the examination. It would appear essential,
particularly in cooperative teaching and learning processes, to get away from a rigid
assignment of access rights to documents.

The dynamic delegation/derivation of rights falls into four distinct categories:

I) derivation of access rights from the social group structure,
II) inheritance of access rights from (a) the environment or (b) a fixed reference
 object,
III) definition of a whole group of persons with administration rights, and
IV) transfer (delegation) of the right to create new rights, i.e. transfer of the respon-

sibility for an object.

6 The insert right refers to the right to insert elements into the environment of an object, e.g. the

insertion of material within a space/area. This is, initially, separated from the write-access
right to the area to enable the modification of the area itself (e.g. changing of attributes) to be
controlled.

7 In the literature, the transfer (delegation) of access rights was first discussed in connection
with authorization models for relational databases [8]. Authors like Bertino et al. take up these
ideas, adding concepts such as negative rights and extended mechanisms for delegating and
revoking the delegation of rights [1].

18 T. Hampel

Fig. 1. Inheriting Access Rights from the Group Structure

3.1 I) Inheriting Rights from a Group Structure

Definitely the simplest way to obtain rights to access documents and material is from
the user and user group structure. If rights are given to an entire user group, all mem-
bers of that group including all members of subgroups acquire those rights (cf. Fig. 1).
Such a mechanism can be used to map rights derived from users’ social status, i.e.
their permanent membership of a user group, but also to express dynamic processes
such as role membership. For instance, if in the course of a discussion a participant is
appointed to act as moderator and is admitted to a corresponding group, that partici-
pant automatically acquires the access rights to documents and material that are tied
to the role of moderator or the access rights to the environment of the discussion
process.

To this extent the rights model for cooperative knowledge spaces presented here is
chosen to allow flexibility with respect to the assignment of persons to groups or
roles. The sTeam system allows the flexible rights concept to be transferred to the
management and administration of the group structure, enabling rights to groups to be
administered on a decentralized basis and to be flexibly adapted. Access rights are
delegated via the group hierarchy of parent and child groups.

Besides inheritance from the group structure, the context, i.e. the environment, of
an object (document) is of particular importance for its accessibility (access rights).8
The chosen concept allows us to specify for a particular object whether the right to
access it is to be derived from the object’s environment (contextual derivation of
access rights) or from an explicitly specified object (semantic derivation of access
rights).

8 One need only think of various real-life metaphors: a document that is lying on a desk, open

to all eyes, or is actually pinned on a notice-board has a quite different status – and thus dif-
ferent access rights – from a document that is kept locked in a safe or in someone’s wallet.

 Access Rights – The Keys to Cooperative Work/Learning 19

Fig.2. Inheriting Rights from the Environment

3.2 II a) Inheriting Rights from the Environment – Contextual Derivation of
Access Rights

The process of inheriting rights from the environment allows us, for example, to spec-
ify rights to access containers or entire spaces/areas, which delegate the rights to the
material they contain. This enables cooperation processes to be designed simply and
flexibly, the material’s structuring elements, i.e. environments, providing it with the
necessary rights for a groupwork or learning process. In an approach of this sort,
moving or transferring a document also causes the access rights to the document to be
adapted to the new conditions. The context from which the rights are inherited may be
either a container or a virtual space, or any other type of object (e.g. a user’s ruck-
sack).

Fig. 3. Contextual Inheritance of Access Rights

The inheritance of rights is not confined to one step of the hierarchy; for example,
starting from the inheritance of rights from the immediate local environment, the
multiple inheritance of rights from arbitrary higher steps of the hierarchy is possible.

20 T. Hampel

Such a concept is particularly useful for the contextual inheritance of rights from the
respective environment: the object inheriting from the container, the container in turn
inheriting from its area (cf. Fig. 2).

In addition, the contextual-inheritance mechanism can be used to map very neat
cooperation models to the user-rights structure. 9

For instance a document that is moved to another user’s rucksack or work folder
can automatically inherit the access rights from the respective object, without the need
for any explicit complicated adaptation of access rights (cf. Fig. 3).

3.3 II b) Derivation of Access Rights from a Fixed Reference Object

When creating new documents or inserting documents, document-management sys-
tems typically select a default setting for access rights. Experience with various sys-
tems in everyday practice has shown that such a general setting of rights means that
there is a continual need to globally adapt such rights. For this purpose, some systems
provide the option of setting rights for a number of objects in one step, but this has to
be explicitly applied after every modification to the overall structure.

Our experience shows that the need to continually adapt rights has a highly nega-
tive effect on the handling of material (e.g. a presentation/lecture) that contains a large
number of files. Every instance of moving or transferring material involves explicitly
adapting the rights for all files. By contrast, a rights delegation mechanism enables all
access rights to be derived from a central fixed object.

The option of deriving rights from another specified object ties the rights, irrespec-
tive of the document’s location, to the rights of a fixed reference object (inheritance
object). This may be a space/area, a container, any other object or a user.

Deriving access rights is particularly important in order to simplify as far as possi-
ble the handling of material within spaces/areas and make it as smooth as possible for
participants in a cooperation process. Ideally, there are in practice only very few
rights directly tied to documents. Such an approach makes it much easier for learners
to adapt the structure of teaching material flexibly to their own concrete needs. In
addition, the creation of new objects can be considerably simplified by cleverly pre-
setting the rights to new documents, e.g. by specifying a container or space/area as a
rights inheritance object, so that rights do not have to be explicitly respecified or
adapted.

3.4 Responsibility for an Object

The classical approach of assigning objects to users is based on a simple owner rela-
tionship. Many systems define the generator of a file as its “creator” or “owner”, i.e.
the person responsible for that file. As a direct consequence of this, an “owner”
 exercises the right to modify arbitrary access rights to the object in question. This can
be illustrated, for example, by the UNIX operating system, which explicitly desig-
nates the owner of a file and also provides mechanisms for transferring the ownership

9 See also [26].

 Access Rights – The Keys to Cooperative Work/Learning 21

of a file to another user. It is important to note that the owner need not automatically
possess all the rights to the file’s objects – but he can at all events assign himself such
rights.

The administration of objects can be divided into three broad conceptual classes:
the option of performing administrative tasks on an object (e.g. setting rights), dele-
gating administration rights to a whole group of persons, and delegating responsibil-
ity for selecting rights to other persons. The last two ways of making administrative
tasks more flexible are considered in greater detail below.

3.4.1 III) Trusted Group
The simplest way of performing administrative tasks on an object is something that
can usually be done by the owner of the object. This approach can be generalized by
tying not a single owner but a whole group of trustworthy persons/administrators
(trusted group) to an object. The underlying concept is henceforth called the delega-
tion of rights. Current research features various approaches that are broadly based on
the delegation of rights.10

Approaches involving the transfer of documents from one worker to the next – ap-
proaches well known from workflow management – can be applied analogously to the
concept of delegating rights. Besides explicitly transferring a document to another
person, there are proposals to offer the option of revoking such a delegation step. The
presented rights model would implement this approach by removing the person in
question from the group of those authorized to administer the object.

The trusted group is not homogeneous in every case. It is, for example, still possi-
ble to identify the owner of the document within the trusted group. This person is still
authorized to delegate to additional users the rights to this document.

Conceptually, the idea of being able to define trusted groups fits in perfectly with
the concepts for cooperatively working on and arranging documents. Applied to the
idea of the self-organization of learning groups, such a mechanism can be used to
create whole groups of persons enabled to administer material.

3.4.2 IV) Right to Delegate Rights – Delegating Responsibility for an Object

The delegation of rights does not wholly solve the problem of decentralized admini-
stration or self-organized administration of material. Only delegation of the right to set
new rights (a right that is typically exercised only by the owner/creator of a document),
allows free structures to be created when handling material. It may, for instance, in

10 Stiemerling and Wulf, for example, propose a concept that extends user rights to include the

attributes of “trustworthy persons” [25]. It is a type of protocol for extending a trusted group.
Though the basic idea was developed in the context of groupware, it can be applied perfectly
well to teaching- and learning-support scenarios. If a person attempts to open a document
without having the required read rights (or to write a document without having the necessary
write access), a notification mechanism is used to contact a number of previously specified
persons to ask how far this right can be assigned. Various strategies are conceivable here –
e.g. a set term for raising objections. Such a concept allows greater freedom when subse-
quently working on material because rights can be dynamically adapted and extended by the
use of documents.

22 T. Hampel

cooperative processes be necessary to transfer material entirely to another user or to
delegate the administration of this object.

An interesting aspect, and certainly an important step towards the decentralized
handling of documents, is – besides delegating the right to administer access rights –
the delegation of responsibility for a document. Normally, the creator of a document
is also its owner. Various approaches are conceivable for transferring the ownership
of a document. Most of them depend primarily on skilful implementation in an appro-
priate user interface.

Fig. 4. The Paderborn Open Source sTeam system – structuring information in Teams

The model proposed in this article introduces a special right to transfer (delegate)
access rights, the so-called “sanction right”. An ownership transfer right is thus in-
troduced for each object. This right can be assigned to individuals or groups of peo-
ple. The possessors of such a right are enabled to transfer ownership of the document
to others, and thus extend the right to administer rights. Our experience shows that the
ability to selectively control the delegation of rights in this way is one of the key
characteristics of a cooperative work environment that is self-organized and adminis-
tered on a decentralized basis.

 Access Rights – The Keys to Cooperative Work/Learning 23

3.5 Authorizations Outside the Model – Group of Administrators

Besides careful user and user group structuring, it would appear essential in practice to
introduce a group of users that are able to generally access any object within the envi-
ronment without the explicit setting of rights in ACLs. This is essential for administra-
tive reasons – considering the possibility that users could, by mistake, revoke authoriza-
tion for them to access their own files – even though such a general assignment of rights
is by no means unproblematic from the point of view of data protection.

In the sTeam concept, an approach featuring specific group rights is chosen, ena-
bling rights to all objects within the system to be specified for each user group. This is
a completely opposite approach to specifying rights to documents for users and
groups. Such group rights allow, for example, a group of administrators to be granted
the right to modify rights to all documents within the system. At the same time, dif-
ferent types of cooperation rules can be defined. For instance, it can be defined for a
particular group that the right to read documents is available to every group member.
Specifically, this involves defining a series of rights for user groups that can have
fundamental effects on the composition of cooperative knowledge spaces (e.g. read
rights for all documents in a group space).

3.6 Rights Groups

Motivated by a large number of “collaboration rights” [24], i.e. a large number of
individual rights such as can occur in a cooperative system, Shen and Dewan intro-
duce the concept of rights groups [ibid., p. 53ff.]. Here, a transitive contained-in
relation is defined for individual access rights. This enables complex authorizations
to be reduced to elementary access rights. The model proposed here contains no
restrictions with respect to the number of elementary access rights, but to ensure
clarity and comprehensibility for users, their number should be kept to, say, eight at
the most.

More complex access rights are implemented by special applications or clients, e.g.
the right to make entries in a cooperative groupware calendar can be implemented by
the respective client to the write or insert right for a groupware-calendar object. In this
way, most complex authorizations can be reduced to write or execute rights for spe-
cific objects. These can be represented specifically by the user interfaces of the coop-
erative applications. The kernel system does not necessarily need a new, separately
administered right.

3.7 Roles – User-Tied Authorizations

Early on in their work on the cooperative editor CES and the groupware calendar
PCAL, Greif and Sarin discuss the use of roles as a way of abstracting different
access rights, decoupled from the access rights models of the underlying operating
system [7, p. 199ff.]. Roles are characterized by rights to access or modify

24 T. Hampel

documents and objects. Analogously, Ellis et al. define roles as privileges, respon-
sibilities and attributes assigned to a person.11

Many content-management – and also hypertext – systems use roles as a pure ab-
straction for the definition of a combination of access rights [6]. The role concept is,
however, even considered useful in business-application contexts. To implement the
roles in cooperative knowledge spaces, associations between access rights and roles
as well as between roles and users have to be administered. Applied to the developed
model of user groups and access rights, roles can be implemented by the flexible crea-
tion of specific user groups or the flexible assignment of users to user groups. Group
rights assigned to a specific user group conform to generally assigned role rights.
Rights to access specific material that are assigned to a role are implemented by rights
of the corresponding user group to access the objects. Roles can be flexibly assigned
by adding a person to a user group or revoked by removing a person from a user
group. The main effort involved in providing roles is for their visualization in the
respective user interface and for continuously matching the chosen roles to the struc-
ture of the learning process.

4 Our Experiences – Evaluation of the Presented Model

Besides testing and evaluating existing tools and system solutions, for some years
now we have been designing and implementing architectures and tools for coopera-
tive knowledge organization. The opensTeam open-source environment (cf. Fig. 4) is a
product of these development efforts [10], [12]. opensTeam is not so much a concrete
learning environment or a learning system based on specific didactic principles as an
open-source environment for cooperative knowledge construction that can be fleshed
out according to the respective user’s needs and wishes.

In addition to the design of architectures for cooperative knowledge construction,
the environment features a theoretical approach and a number of metaphors. These
allow us to differentiate between technical problems on the one side and didactic and
pedagogical problems on the other, and thus enable us to derive the essential technical
issues relating to cooperative knowledge construction. The result is the concept of
media functions [11], [12], which allows elementary cooperative actions in handling
material to be viewed as part of a knowledge construction process.

Parallel to the design of various theoretical models and the construction of envi-
ronments supporting cooperation, the developed architecture and its concrete im-
plementations in the form of the sTeam system and its web-based interfaces are subject
to constant testing in everyday practice [13], [14]. The feedback obtained is continu-
ously incorporated into the design processes for the above-mentioned infrastructures
and used to further refine the underlying theoretical concept.

Therefore the presented model of access rights is the result of a numerous evalua-
tion of the sTeam-cooperative work/learning system in daily use. Different access
rights models have been evaluated in a number of contexts.

11 “A role is a set of privileges and responsibilities attributed to a person [...]. Roles can be

formally or informally attributed.” [5, p. 46].

 Access Rights – The Keys to Cooperative Work/Learning 25

Fig. 5. Access rights as implemented in the sTeam-system:
(1) assigning roles to groups and users
(2) delegation of access rights from the environment of an object
(3) using the sanction access right to give the right to administrate access rights
(4) explore the group structure to see inherited access rights form the group structure

Figure 5 shows the user interfaces of the currently implemented access rights
model of the sTeam system. As mentioned before the interface implemented here

3

4

2

1

26 T. Hampel

hides much of the complexity of its underlying access rights model from the user. The
upper left screenshot shows the assignment of roles to users. On the left the delegation
of access rights from the environment of an object is shown. This feature is activated
by default. If a more detailed specification of access rights is needed the upper right
dialogue can be used. Here various elementary access rights are presented where also
the sanction access rights can be seen. The dialogue on the right allows to browse the
hierarchical group structure to interactively explore which access rights are inherited
from the group structure.

The following paragraphs document some of the most important findings on the
use of our access rights model in cooperative knowledge construction and Computer-
Supported Cooperative Learning systems, based on our experience with the opensTeam
environment: We restricted our self’s here especially to findings regarding access
rights. More evaluation results are documented in [17].

Negative access rights are difficult to understand for most users.

One of the lessons we learned is that negative access rights are difficult to understand
for most users. Being able to specify negative access rights also to groups makes it
difficult to understand why a granted right may be gone by inheriting a negative ac-
cess right from another group. It seems to be a good idea to restrict negative rights to
the leaves of the inheritance tree and therefore to single users. As a result the actual
sTeam platform supports negative rights, but they are not accessible trough the user
interface at the moment. Our experiences show that this strategy works quite well.

Access rights matching the group structure and context are prerequisites for coopera-
tive actions. Documents are only moved or re-arranged if this is possible without
additional effort for defining access rights, etc. This means that user rights and au-
thorizations must be suitably preset.

The second may be most important lesson we learned is that there is somehow a need
to reduce motoric effort when supporting collaborative tasks in a CSCW environment.
This motoric effort leads directly to the criterion regarding suitable automated defini-
tion and presetting of user rights, i.e. authorizing as a part of cooperative media func-
tions. Cooperation processes, such as the exchange of documents between learners
and teachers (submission of completed assignments) or among different groups of
learners, can only be successful if they do not require additional adjustment effort or
special precautions with respect to access rights. The approach specifically chosen for
the course Praxis der Systemgestaltung [15] was to preset all rights to match the
group structure with its various component tutorial groups. Documents are given
access rights to match the context in which they are created or deposited. If possible,
teachers and learners should not – or only under special circumstances – need to mod-
ify these rights. All access rights are delegated from the environment of the respective
learning environment. – Therefore our goal is to hide access rights form the
usrs/learners but on the same time having a powerful access rights model in the
background.

As part of the learning process, students should be able to create, arrange and link
material, as well as being able to exchange such material and generate shared views
on it. To be more specific: this means that material is made available as part of a

 Access Rights – The Keys to Cooperative Work/Learning 27

course; what students must learn is to relate and reference this material to other
sources, and to annotate and structure it in a group context. The core functions of
cooperative media can thus be reduced to a series of activities that should be available
to all learners, based on the principle self-organization:

These include:
• creating, generating, visualizing, symbolizing or modelling arbitrary material in

areas as well as generating areas and adding new material
• deleting, removing material, annotations and gates as well as areas
• arranging and grouping material into units, generating containers and substructures
• marking/labelling, marking, highlighting specific elements of material, annotating

material
• linking, physically connecting area by means of gates, generating reference objects

to external material

Only if it is possible to apply such primary media functions and combine them
without any additional efforts (e.g. the need to specify access rights) users are willing
to cooperatively structure their knowledge spaces. Therefore the simplicity of the
access right model or better its features to adapt access rights to collaborative tasks
(cf. Fig. 3: Contextual access rights) is one precondition for self organized collabora-
tive spaces.

The delegation of access rights – sanction right is the key to distributed administra-
tion

Most of today’s collaborative systems are still restricted to centralized administration
models where administration lies in the hand of one or a group of authorized users.
Also in modern LDAP approaches where the user und group structure is stored in a
central LDAP directory and distributed to a cluster of collaborative servers the logical
structure is centralized. Self administrated features such as the invitation to groups or
the totally decentralized administration of parts of the learning environment is hard to
archive in such architecture models.

Our experiences show that for really collaborative scenarios where groups are
flexible formed and constantly adapted by the learners themselves the access rights
model has to support such flexibility. Our sanction access right (see Fig. 5) proved to
be a well working concept to archive such flexibility of a decentralized administra-
tion.

Therefore the key factor determining the acceptance of a virtual environment for
cooperative knowledge organization is the degree to which it proves possible to main-
tain consistency between real-world groups of learners and their virtual counterparts.
Learners must be able to map real-world group structures, such as their tutorial group
and their learning groups, to the virtual learning and work environment easily and
without extra effort. Experience with the course Praxis der Systemgestaltung has
shown that learners constantly wish to establish relations between the real-world
working group and the virtual group structures. This is evident from typical questions
like “Where have you deposited the slide for this tutorial?” or “Can we deposit our
notes on this tutorial in a shared area?” In both cases, the knowledge area assigned to

28 T. Hampel

each real tutorial group via its virtual counterpart is the appropriate place for deposit-
ing and working on the material forming part of a learning process.

Access rights to flexible adapt knowledge spaces

Closely connected with this blending of real and virtual group structures is the
adaptability of the environment for virtual knowledge construction to widely differing
use scenarios. Experience with different practical implementations of the system has
shown that the teachers, too, favour highly diverse forms of information flow and
document exchange. In the course Grundlagen der Informatik für Lehrämter (basic
computer science for teacher education), for instance, very different ways of submit-
ting completed assignments were implemented than in, say, the following Einführung
der Informatik für Medienwissenschaftler (computer science for media scientists)
course. Thus, the key factor determining acceptance of an environment for virtual
knowledge organization is its ability to implement and map different forms of coop-
eration. Accordingly, the sTeam system mainly provides generic functions and proce-
dures for the cooperative handling of material and constitutes as open as possible a
platform that can be fleshed out according to the users’ needs and preferences. The
access rights model which its contextual access rights and the sanction right are im-
portant preconditions to archive such a flexibility [21]. The model of being able to
handle over the right to grant new access rights allows a completely de-centralized
administration of knowledge areas. As the implemented access rights model also
controls the ability to include new tools, objects or even new code into a knowledge
room the sanction rights is also the key concept to equip rooms with totally new
functionality.

5 Conclusions

The presented access rights model was designed to be as open and flexible as possible
for use in a system of cooperative knowledge spaces. No consideration was given to
explicitly negative rights. These can be useful for selectively revoking a user’s au-
thorization, but they complicate the model considerably, especially in connection with
the inheritance of rights.

The existing kernel architecture in the form of the sTeam system provides a basis
for future testing of various models designed for use in virtual knowledge spaces. For
instance, based on the concept of the contextual inheritance of rights, rights can be
tied to areas only, thus implementing a simple geographical/spatial model of rights
setting [3].

Future research will be concerned with selecting suitable inheritance structures for
rights and determining the number of required individual rights, but its main focus
will be on the new mobility requirements of cooperative knowledge spaces. On this
point in particular, future work will need to study and test new demands being made
on the access rights model’s capabilities (in terms of its clarity and simplicity) for
spontaneously emerging knowledge areas (i.e. knowledge areas forming ad hoc net-

 Access Rights – The Keys to Cooperative Work/Learning 29

works) or for temporary knowledge areas. Initial tests have shown that the chosen
model offers the necessary scope here.

Acknowledgments

Our thanks go to all sTeam system developers, especially Thomas Bopp, Daniel Büse
and Ludger Merkens.

References

1. Bertino, E., Samarati, P., Jajodia, S.: An Extended Authorization Model for Relational
Databases. IEEE Transactions on Knowledge and Data Engineering 9(1) 1997, 85–101.

2. Bentley, R., Appelt, W.: Designing a System for Co-operative Work on the World-Wide
Web: Experiences with the BSCW System. In: Nunamaker, J.F., Sprague, R. H. (Hrsg.):
Proceedings of the HICCS '97, 30th Annual Hawaii International Conference on System
Sciences, Vol. IV, January 7-10, Wailea, Hawaii. Washington: IEEE Computer Society
Press 1997, 297–306

3. Bullock, A., Benford, S.: An access control framework for multi-user collaborative envi-
ronments. In: Hayne, S.C. (Hrsg.): Proceedings of the International ACM SIGGROUP
Conference on Supporting Group Work (Group99), November 14-17, Phoenix, USA. New
York: ACM Press 1999, 140–149.

4. Dourish, P., Edwards, K., LaMarca, A., Salisbury, M.: Presto: An Experimental Architec-
ture for Fluid Interactive Document Spaces. ACM Transactions on Computer-Human In-
teraction 6(2) 1999, 133–166.

5. Ellis, C.A., Gibbs, S.J., Rein, G.: Groupware: some issues and experiences. Communica-
tions of the ACM 34(1) 1991, 39–58.

6. Gavrila, S.I., Barkley, J.F.: Formal Specification for Role Based Access Control User/
Role and Role/ Role Relationship Management. In: Proceedings of the third ACM work-
shop on Role-based access control, October 22 - 23, 1998, Fairfax, USA, 81–90.

7. Greif, I., Sarin, S.: Data Sharing in Group Work. ACM Transactions on Office Informa-
tion Systems 5(2) 1987, 187–211.

8. Griffiths, P.P., Wade, B.W.: An Authorization Mechanism for a Relational Database Sys-
tem. ACM TODS 1(3) 1976, 242–255.

9. Haake, J.M., Schümmer, T., Haake, A., Bourimi, M., Landgraf, B.: Supporting Flexible
Collaborative Distance Learning in the CURE Platform, Proceedings of the 37th Annual
Hawaii International Conference on System Sciences (HICSS'04) - Track 1, January 05 -
08, 2004, Big Island, Hawaii.

10. Hampel, T., Keil-Slawik, R.: sTeam – Designing an Integrative Infrastructure for Web-
Based Computer Supported Cooperative Learning. In: Proceedings of the 10th Interna-
tional World Wide Web Conference, May 1-5, 2001, Hong Kong, 76–85.

11. Hampel, T. Virtuelle Wissensräume. – Ein Ansatz für die kooperative
Wissensorganisation, Universität Paderborn, Fachbereich 17 – Informatik, PHD-thesis,
März 2002, in German.

12. Hampel, T., Keil-Slawik, R.: sTeam: Structuring Information in a Team – Distributed
Knowledge Management in Cooperative Learning Environments. In: ACM Journal of
Educational Resources in Computing 1(2) 2002, 1–27.

30 T. Hampel

13. Hampel, T.: Our Experience With Web-Based Computer-Supported Cooperative Learning
– Self-Administered Virtual Knowledge Spaces in Higher Education. In: Proc. of Site
2003 – Society for Information Technology and Teacher Education - International Confer-
ence. Charlottesville (Va.), USA: Association for the Advancement of Computing in
Education 2003, 1443-1450.

14. Hampel, T., Eßmann, B.: Self-Administered Cooperative Knowledge Areas – Evaluation
of the WWW Interface in Terms of Software Ergonomics, In: Harris, D., Duffy, V.,
Smith, M., Stephanidis, C., Human - Centred Computing – Cognitive, Social and Ergo-
nomic Aspects, Volume 3, Lawrence Erlbaum Associates, Publishers, Mahwah, New Jer-
sey, London, 2003, 729-733.

15. Hampel, T., Keil-Slawik, R.: Experience With Teaching and Learning in Cooperative
Knowledge Areas., Proceedings of The Twelfth International World Wide Web Confer-
ence, 20-24 May 2003, Budapest, Ungarn, published on CD-ROM, 1-8.

16. Hampel, T., Keil-Slawik, R., Eßmann. B.: Jour Fixe - We Are Structuring Knowledge
Collaborative - Structuring of Semantic Spaces as a Didactic Concept and New Form of
Cooperative Knowledge Organization. In: Rossett, A. (Ed.), Proceedings of E-Learn 2003,
AACE Press, 2003, 225-232.

17. Hampel, T.: Computer Supported Cooperative Learning - a Set of Theses, Society for In-
formation Technology and Teacher Education International Conference, Vol. 2004, Issue.
1, 2004, pp. 937-944.

18. Kawell, L., Beckhardt, S., Halvorsen, T., Ozzie, R., Greif, I.: Replicated Document Man-
agement in a Group Communication System. Proceedings of the 2nd International Confer-
ence on Computer-Supported Cooperative Work (CSCW’88), September 26-28, 1988,
Portland (Or.), USA. SIGCHI/SIGOIS ACM 1988, reprinted in: Marca, D., Bock. G.
(Hrsg): Groupware: Software for Computer-Supported Cooperative Work. IEEE Com-
puter Society Press 1992, 226–235.

19. Lampson, B.: Protection. In: Proceedings of the 5th Princeton Conference on Information
Sciences and Systems, Princeton, 1971. Reprinted in ACM Operating Systems 8(1) 1974,
18–24.

20. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in Distributed Sys-
tems: Theory and Practice. ACM Transactions in Computer Systems 10(4) 1992, 265–310.

21. Rubart, J., Hampel, T.: Structuring Cooperative Spaces: From Static Templates to Self-
Organization. In: Hicks, D. L. (Ed.): Metainformatics. International Symposium, MIS
2003, Springer-Verlag, 2004, 119–125.

22. Satyanarayanan, M.: Integrating Security in a Large Distributed System. ACM Transac-
tions on Computer Systems 7(3) 1989, 247–280.

23. Sikkel, K.: A Group-based Authorization Model for Computer-Supported Cooperative
Work. GMD – Forschungszentrum, working draft, GMD 1055, März 1997.

24. Shen, H., Dewan, P.: Access Control for Collaborative Environments. In: Turner, J.,
Kraut, R. (Hrsg.): Proceedings of the Conference on Computer-Supported Cooperative
Work – CSCW92, October 31 - November 4, Toronto, Canada. New York: ACM Press
1992, 51–58.

25. Stiemerling, O., Wulf, V.: Beyond “Yes and No”- Extending Access Control in Group-
ware with Awareness and Negotiation. In: Darses, F., Zaraté, P.P. (Hrsg.): Proceedings of
the Third International Conference on the Design of Cooperative Systems (COOP´98),
Vol. I, 26.-29.5.1998, Cannes, France, INRIA, 1998, 111–120.

 Access Rights – The Keys to Cooperative Work/Learning 31

26. Trevor, J., Rodden, T., Mariani, J.: The Use of Adapters to Support Cooperative Sharing.
In: Furuta, R., Neuwirth, Ch. (Hrsg.): Proceedings of the ACM Conference on Computer
Supported Cooperative Work (CSCW’94), October 22 – 26, Chapel Hill, USA. New
York: ACM Press 1994, 219–230.

27. Zhang, Z., Haffner, E., Heuer, A., Engel, T., Meinel, Ch.: Role-based Access Control in
Online Authoring and Publishing Systems vs. Document Hierarchy. In: Proceedings on
the Seventeenth ACM Annual International Conference on Computer Documentation,
September 12-14, 1999, New Orleans, USA, 193–198.

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 32 – 41, 2004.
© Springer-Verlag Berlin Heidelberg 2005

Flexible Notifications and Task Models
for Cooperative Work Management

Jessica Rubart1 and Helge Richter2

Fraunhofer IPSI, Dolivostrasse 15, 64293 Darmstadt, Germany
1 rubart@ipsi.fraunhofer.de, info@jessicarubart.de

2
mail@helge-richter.de

Abstract. Knowledge intensive cooperative work requires emergent workflow
management. Participants interact with the workflow engine and jointly rede-
fine and activate workflow structure. To improve the usability of such systems
we present reconfigurable notification mechanisms as well as shared task mod-
els that can be used from diverse clients at the same time focusing on different
kinds of visualization and navigation.

1 Introduction

Conventional workflow management systems (WfMSs) and architectures [11] focus
on support for automatic enactment of asynchronous cooperative work, where the
flow of work is usually predefined. Knowledge intensive cooperative work, however,
is neither recurring nor prescribed in detail. Rather, work plans evolve as the work
progresses. Interactive process models [4, 5] address knowledge intensive work by
involving users in contextual model interpretation. Interactive process models are
created and updated by the project participants to reflect evolving plans.

In [8] we argue that interactive model activation does not only include the interac-
tion between the participants and the workflow engine, but also the interaction among
the participants themselves. Cooperation-aware synchronous groupware systems
supporting informal and creative interactions between participants need to be inte-
grated with flexible work management. This enables joint (re)definition of emerging
activity breakdown structures and their flexible interactive activation.

During the evaluation of this approach in the EXTERNAL project [2] it was sug-
gested to open the integrated environment to standard communication means, e.g. to
add more e-mail notifications when changes happen. In [7] a survey on workflow
management systems identified the need to support reconfigurable notification
mechanisms with respect to occurring changes. Additionally, contextual navigation
possibilities through visual workflow models in an easy to access web-based envi-
ronment were required.

In this paper, we present reconfigurable notification mechanisms as well as shared
task models that can be used from diverse clients at the same time focusing on differ-
ent kinds of visualization and navigation. Our approach builds on shared hypermedia
workspaces that are configured to model workflow structure [8, 9] and addresses the

Flexible Notifications and Task Models for Cooperative Work Management 33

above mentioned requirements. It focuses on communication-oriented work manage-
ment as shared visual models that evolve over time as well as explicit notifications
support the communication among the participants.

From the metainformatical view [6], taken in this community, work management
systems support an organization’s primary task and, thus, belong to the B level of
Engelbart’s ABC model of organizational improvement. The usability of these sys-
tems can be improved by configurability and easy to access contextual visualization
and navigation means. Therefore, improving the usability of work management sys-
tems can be considered C level work.

2 Knowledge Intensive Cooperative Work

Within knowledge intensive cooperative work problems are incompletely understood.
While solving the problems knowledge workers develop a common understanding
about them. Success depends on joint problem solving capabilities and creativity of
the knowledge workers [5]. Work management support needs to be very flexible as
work plans evolve.

Table 1 shows two extremes of workflow management systems. Today’s WfMSs
usually focus on labor or capital intensive work. They provide support for automatic
enactment of processes, which typically are repetitive and modeled by experts. In
addition, workflow definition and enactment are clearly separated phases within the
workflow management lifecycle. Emergent WfMSs, in contrast, focus on knowledge
intensive work. Participants are involved in interpreting the workflow and can jointly
redefine, negotiate, and perform cooperative activities [5, 8]. Those processes are
usually unique. Participants can adapt them during activation and thus articulate their
work at any time.

Table 1. Two Extremes of WfMSs

Today’s WfMSs Emergent WfMSs
Labor/capital intensive work Knowledge intensive work
Automatic enactment Collaborative interactive activation
Repetitive processes Unique processes
Modeled by experts Modeled by participants
Separated definition and enactment Integrated articulation and activation

Most work integrates knowledge intensive parts. We applied collaborative interactive
activation of emergent workflows in the EXTERNAL project and had positive results
[2, 5]. Suggestions for improvement, in particular with respect to knowledge intensive
work, where change is more the norm rather than the exception, include [2, 7]:

• Reconfigurable notification means to improve the awareness of cooperative
work management

• Contextual navigation possibilities through visual workflow models in an easy
to access web-based environment

34 J. Rubart and H. Richter

3 Flexible Notifications and Task Models

Our approach builds on shared hypermedia workspaces that are configured to model
workflow structure [8, 9]. These workspaces support cooperative modeling of emerg-
ing workflows and their flexible collaborative interactive activation.

In the following we describe how shared hypermedia-based task models can be
used from diverse clients at the same time focusing on different kinds of visualization
and navigation. Afterwards we present integrated notification mechanisms that open
the environment to standard communication means. Finally, we describe a way to
provide contextual navigation possibilities through visual workflow models on the
web.

3.1 Shared Hypermedia-Based Task Models

Tasks are modeled as shared hypermedia composites [8] to enable synchronous coop-
eration and complex task structures. The sharing is a built-in characteristic of the
hypermedia objects. Every hypermedia object has a unique identifier and is poten-
tially accessible from all participants. Concurrency control mechanisms take care of
consistency. Notification mechanisms can be seen on different levels. On the low
level of object sharing notification mechanisms support the consistency of an object
and its different representations in a distributed system. For synchronous cooperation,
in order to provide immediate feedback about the interactions of other users, notifica-
tions about changes on shared objects are supported. In addition, persistency is pro-
vided for shared objects to support asynchronous cooperation, continue synchronous
work later, and support transitions between asynchronous and synchronous coopera-
tion.

Our data model uses special node and link types for representing workflow struc-
tures explicitly. Task objects are composite objects and can thus contain other nodes
and links in order to model nested structures. A system implementing shared hyper-
media composites already knows about changes on task structures and attributes.
Thus, changes on tasks related to end user notifications can easily be identified.

Fig. 1 shows our architecture supporting different kinds of visualization and navi-
gation with respect to the same shared hypermedia-based task models. The greyly
marked CoWom (communication-oriented workflow management) components con-
tain a specific shared hypermedia-based task model that is based on top of the generic
hypermedia model of XCHIPS4KM1 [9] and can thus be used in associated shared
hypermedia workspaces. Instances of such task models are replicated between a
server and connected XCHIPS4KM clients accessing them. At the same time specific
task servlets reside on the server side and can access and manipulate those models.
Thus, a standard web client can work on the same task models by interacting with
those servlets.

1 XCHIPS4KM adds a configuration environment to XCHIPS [8] and is implemented on top of

the DyCE groupware framework [10].

Flexible Notifications and Task Models for Cooperative Work Management 35

In addition, the server side contains a notification service focusing on end user no-
tifications. This services observes specific task models in order to send notifications
based on configured changes, such as a reached deadline (cp. next section). It can also
be used from CoWom clients as any other service in the system and from task servlets
to configure notifications in the system.

Server

Special Client

Database
System

XCHIPS4KM

XCHIPS4KM

CoWom Client

CoWom Server

HTTP(S) /
TCP/IP /
UDP

Web Client

Web Browser

HTTP(S)

Task Servlet
Shared Hypermedia-
based Task Model

<<database>>
Shared Data

Shared Hypermedia-
based Task Model

<<replicated>>

Notification
Service

CoWom

CoWom

Fig. 1. Architecture

3.2 Notification Mechanisms

In our approach, end users are able to configure different kinds of notification types
based on changes in dynamic workflows, such as status changes, structural changes,
or changes related to the notification configuration itself.

Fig. 2 shows example notifications by e-mail (top part), news feed (middle part),
and instant messaging (bottom part).

36 J. Rubart and H. Richter

Fig. 2. Notifications by E-Mail (shown in Netscape2) , News feed (shown in Abilon News Ag-
gregator3), and Instant Messaging (shown in Miranda IM4)

E-mail is a traditional well-known asynchronous communication mechanism that is
widely used.

RSS news feeds are increasingly used on websites in order to provide news and
events. RSS5 (RDF Site Summary) is an RDF6 (Resource Description Framework)
vocabulary for describing news and events. With respect to workflows and tasks news
feeds can provide histories of configured events for users and groups of users. With-
out having to view the different workflows or tasks, news feeds provide the most
interesting changes at a glance.

Instant messaging focuses on synchronous communication and is starting to get
used seriously in business life. Messages are transferred immediately between partici-
pants. Some people criticize the instant nature of this medium as being annoying, but
usually this is a matter of configuration. For instance, people can indicate whether
they are available or occupied, whether any, just urgent, or even no messages should
pop up. Usually, messages can be read later when not turned up instantly.

2 http://www.netscape.com/
3 http://www.abilon.org/
4 http://www.miranda-im.org/
5 http://web.resource.org/rss/1.0/
6 http://www.w3.org/RDF/

Flexible Notifications and Task Models for Cooperative Work Management 37

These examples of notification types can, of course, be extended, for instance by
messages to mobile phones based on SMS (Short Message Service) or MMS (Multi-
media Message Service).

Fig. 3 shows fundamental differences of some notification types. While e-mail has
its place as the average of response time and degree of disturbance, other notification
types do have their own areas of application. News feed, for example, has a similar
response time as snail mail, but a lower degree of disturbance. Of course, in order to
make available those notification types to the notification service corresponding APIs
need to be available and integrated.

de
gr

ee
 o

f d
is

tu
rb

an
ce

average response time

instant message, SMS, MMS

snail mail

placard

high

low

short long

phone call

e-mail, fax

news feed

Fig. 3. Differences of some Notification Types

Changes on tasks that are big enough to be a potential basis for end user notifica-
tions should appear in configuration dialogs. Fig. 4 shows an example configuration
dialog taken from a CoWom web page, which presents a task description and supports
its manipulation.

The upper part shows configuration options for the currently logged in user. A lis-
tener type represents an important change on the associated task, such as status
changed. Next to notify via the notification type can be selected, such as instant mes-
saging via Jabber7. Jabber is an XML-based messaging protocol that is supported by
several instant messengers. The lower part of Fig. 4 shows actors assigned to the
current task and their configured notifications. This is one way of how to represent
such configurations in a user interface. In addition, not only web-based clients, but
also specific CoWom clients provide such functionality.

7 http://www.jabber.org/

38 J. Rubart and H. Richter

Fig. 4. Example of Configured Notifications

3.3 Web-Based Visual Task Models

To provide contextual visual workflow models in an easy to access web-based envi-
ronment SVG8 (Scalable Vector Graphics) seems a good choice because it can be
generated for every task and visualized in browsers. Fig. 5 shows an example web-
based visual task model using SVG. It has three parts: The current task is shown in
the middle; its predecessors are visible on the left side and its successors are presented
on the right side. The icons provide awareness about task related information, such as
its status or whether it’s assigned to the current user.

Navigation is also possible through this visualization. Clicking on such a task visu-
alization of a predecessor or successor task generates a CoWom web page, which
presents the details of the selected task and supports its manipulation. In addition, the
SVG-based contextual view on the selected task is presented, i.e. the selected task is
shown in the middle. Clicking on the middle task will show the contents of that task,
i.e. its subtasks. Navigating to one of those subtasks provides its details and the SVG-
based contextual view.

Such easy to access web-based visual task models complement special CoWom cli-
ents that are more complex and also support synchronous cooperation. Special Co-
Wom clients can be started via the web by using technologies, such as Java Web
Start9, but are not based on a markup language. They can provide more sophisticated

8 http://www.w3.org/TR/SVG/
9 http://java.sun.com/products/javawebstart/

Flexible Notifications and Task Models for Cooperative Work Management 39

Fig. 5. A Visual Task Model with SVG

cooperative user interfaces, such as the workflow modeling and activation user inter-
face of XCHIPS [8]. With this approach both kinds of clients and user interfaces can
be provided and combined.

4 Related Work

Traditional WfMSs, such as WWWorkflow [1], focus on support for automatic en-
actment of asynchronous cooperative work. They are mainly used to automate routine
procedures, which can be completely prescribed.

Ad hoc WfMSs, such as Freeflow [3] and WORKWARE [4, 5], address flexible
workflow management by allowing users to participate in interpreting the workflow.
However, they lack support for synchronous cooperation to enable joint redefinition
of emerging workflow structure that includes the negotiation of joint work processes
and the facilitation of synchronous access to shared information resources providing
immediate interactive feedback and awareness.

Both kinds of WfMSs usually support, if any, just e-mail notifications. To our
knowledge there is no workflow management approach supporting reconfigurable
notifications, which are particularly important with respect to emergent workflows.

Concerning architectures for structural computing environments [12, 13] a founda-
tion services layer has been proposed that provides basic infrastructure services like
versioning and notification control. Such notification control focuses on event notifi-
cations in the system rather than on notifications for end users (cp. section 3.1).

40 J. Rubart and H. Richter

5 Conclusions

We have presented an approach supporting communication-oriented cooperative work
management. It improves particularly knowledge intensive cooperative work man-
agement (but also traditional) by providing reconfigurable notification means and
flexible visual task models that can be used from diverse clients at the same time
focusing on different kinds of visualization and navigation. It builds on the approach
presented in [8] that integrates flexible workflow management with cooperation-
aware synchronous groupware. The same shared hypermedia objects, such as tasks
and actors, are manipulated from the different clients. Integrated notification mecha-
nisms open the environment to standard communication means and thus improve the
acceptance of such dynamic cooperative workflow management solutions.

In our future work we want to generalize the notification mechanisms and provide
a nonspecific notification framework. This can be applied to very different application
domains, such as to meta-modeling activities presented in [9], which support the defi-
nition and evolution of shared modeling languages, or to structural computing envi-
ronments [12, 13] to support end user notifications based on structural changes man-
aged by different structure services.

Acknowledgments

We would like to thank the attendees of the Metainformatics Symposium 2004 in
Salzburg as well as the anonymous reviewers for their valuable feedback.

References

1. Ames, C.K., Burleigh, S.C., and Mitchell, S.J.: A Web Based Enterprise Workflow System,
In: Proceedings of GROUP'97, ACM Press (1997)

2. Chrysostalis, M., Hildrum J., Krogstie, J., Scagno, G., and Stromseng, K.: EXTERNAL
WP9 – Deliverable D5: Use Case Evaluation Report, available at http://www.external-
ist.org/ (2003)

3. Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., and Zbyslaw, A.: Freeflow: Me-
diating Between Representation and Action in Workflow Systems. In: Proceedings of
CSCW '96, ACM Press, 1996.

4. Jørgensen, H.D. Interaction as a Framework for Flexible Workflow Modelling. In: Pro-
ceedings of Group 2001. Boulder, USA: ACM Press (2001)

5. Jørgensen, H.D. Interactive Process Models. PhD-thesis, Norwegian University of Science
and Technology, Trondheim, Norway (2004)

6. Nürnberg, P.J.: Building Metainformatical Bridges. In: Metainformatics. International
Symposium, MIS 2002, Springer-Verlag, (2003) 6-8

7. Richter, H.: CoWom – Ein kommunikationsorientiertes Workflow-Management-System.
Diploma thesis at Darmstadt University of Technology, (2004, in German)

8. Rubart, J., Wang, W., Haake, J. M. Supporting Cooperative Activities with Shared Hy-
permedia Workspaces on the WWW. In: Alternate Track Proceedings of WWW 2003,
MTA SZTAKI (2003)

Flexible Notifications and Task Models for Cooperative Work Management 41

9. Rubart, J., Wang, W., and Haake, J. M. A Meta-Modeling Environment for Cooperative
Knowledge Management. In: Metainformatics. International Symposium, MIS 2002,
Springer-Verlag, (2003) 18-28

10. Tietze, D.A.: A Framework for Developing Component-based Co-operative Applications.
In: GMD Research Series No. 7/2001, ISBN: 3-88457-390-X (2001)

11. WfMC, Workflow Handbook 2001, ed. L. Fischer. 2000, Lighthouse Point, Florida, USA:
Workflow Management Coalition, Future Strategies Inc. (2000)

12. Wiil, U.K., Hicks, D.L., and Nürnberg, P.J.: Multiple Open Services: A New Approach to
Service Provision in Open Hypermedia Systems. In: Proceedings of Hypertext’ 01, ACM
Press (2001) 83-92

13. Wiil, U.K., Hicks, D.L., and Nürnberg, P.J.: An Agenda for Structural Computing Re-
search. In: Metainformatics. International Symposium, MIS 2004, Springer-Verlag,
(2004, this book)

Managing Ontological Complexity: A Case Study

Peter J. Nürnberg and Svetlana Krestova

Department of Software and Media Technology,
Aalborg University Esbjerg,

Niels Bohrs Vej 8
DK-6700 Esbjerg, Denmark

{pnuern, sak}@cs.aue.auc.dk

Abstract. Ontologies represent a widely accepted method for modelling
structured knowledge spaces. Ontologies are particularly useful in mod-
elling corporate or collective knowledge spaces. As such, they provide a
vehicle for codifying the collected experience, best practices or common
agreement of communities. Nonetheless, in practice, such knowledge must
be tailored by practitioners to meet the challenges at hand. While tools
for the construction of ontologies abound, we have found that many users
are still reliant on human judgement instead of computational support
when ontological knowledge must be tailored, personalized, customized
and/or applied. In this paper, we examine some of the circumstances sur-
rounding this state of affairs, and contemplate possible roles for compu-
tational support in these undertakings. We do this through based on our
experiences with the Multilingual Dictionary of Lexicographical Terms
(MDLT), a prototype of a linguistic database.

1 Introduction

Recently, more and more communities have started to implement ontologies
in their studies and create their own domain-specific or general purpose ones.
Scientists use ontology for describing concepts and relationships that can exist
for an agent or community of agents.

Ontology creators use different levels of complexity and address differ-
ent kinds of problems. Some communities (e.g., computer scientists) gener-
ate application-focused databases from large ontologies and study optimiza-
tion schemes to facilitate high quality sub-ontology extraction or the devel-
opment of a translation approach to portability preserving the computational
efficiency of implemented systems. Other groups of scientists find the prob-
lem of ontology evolution fundamental. They investigate questions of how to
manage multiple versions of an ontology and how to represent differences
and transformations between ontologies. Even when an entire community is
studying one problem, there still can be different opinions about the same
question [1, 2].

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 42–50, 2004.
c© Springer-Verlag Berlin Heidelberg 2005

Managing Ontological Complexity: A Case Study 43

2 Lexicography

The common problem in ontology building for every community is that there are
few hard and fast rules for creating an ontology – every specialist must follow
personal experience during the work. There is a possibility that members of the
same community belonging to different languge cultures have different ways of
concept structuring in the same ontologies; misunderstandings because of the
translation problems; or, non-existing language concepts. All of these problems
were discoved earlier by terminologists and lexicographers. It is easy to illustrate
them from already existing experiences.

For many years lexicographers were creating dictionaries of different types:
monolingual; multilingual; encyclopedias; general purpose dictionaries; and, ter-
minological dictionaries. The ones we address here about are specialized or ter-
minological dictionaries. This type of dictionary is the most interesting for us
because the process of making such dictionaries includes ontology building and
concept relationships analysis. To illustrate aforementioned problems, we use the
Multilingual Dictionary of Lexicographical Terms (MDLT), an online multilin-
gual, terminological dictionary currently under development.

Lexicography, as any specialized branch of science has its own history, theory,
and practice. For a long time lexicography was understood in a narrow sense –
as an applied part of linguistics. But nowadays, with the very rapid advances in
technologies and formats of reference materials, partially after the development
of electronic media and global computerization, lexicography was recognised as a
global academic domain of reference science. This has reinforced and accelerated
the growth of lexicography as a separate branch of science. We feel that lexi-
cography now merits its own dictionary reflecting its newly acquired first-class
status.

In the twentieth century, printed versions of dictionaries were reedited and
even transformed into electronic form and placed on the Web. These were the
first steps towards corpus and cyber lexicography. Many well-known publishing
houses have started to produce dictionaries on CD and place information on the
Internet. This has changed the structure and composition of the material within
the dictionary and search strategies. It made the access to the information easier
and the speed of the knowledge operation faster.

3 Multilingual Dictionary of Lexicographical Terms

One example of a new tendency in dictionary making is the Multilingual Dictio-
nary of Lexicographical Terms (MDLT). The MDLT is a prototype of a linguistic
database avaliable on the Internet. The main goal of this project is to provide all
users, especially student-linguists, with a tool for increasing lexicographical com-
petence. We based our project on an investigation of users needs and demands.
Through our rich entry structure (including translation equivalents, set phrases,
synonyms, antonyms, etc.) the system combines large volume with quality of
information and convenient query. Our initial motivation was a lack of dictio-

44 P.J. Nürnberg and S. Krestova

Fig. 1. Part of the conceptual system for the subject field of lexicography

naries that serve to underline differences between Russian and English terms
in the subject field of lexicography. Therefore, our dictionary contains entries
in two languages – Russian and English. However, our system can also support
other European languages such as German, French, Italian, Danish, etc.

The first and most important step toward creating an LSP dictionary (what
was proved by our work) is building up a conceptual system of the subject field
under study. As an example we will take a piece of our conceptual system lexicog-
raphy illustrating the dictionary structure (see figures below). It is important to
state the part-whole relationships between the concepts in a given terminological
structure before describing them in the dictionary.

This conceptual system served as a systematic listing of the specialized ter-
minology that helped ensure that no terms and/or categories were missing from
our dictionary. The system also helped in searching and defining the hierarchy
of definite conceptual structure, common to all texts in a given subject field.

For building up a conceptual system, it is necessary to have lists of concepts
chosen from different sources. To make the dictionary reliable, the sources must
be selected carefully. In our case, we took all well-known existing dictionaries
of lexicographical terms (including [3, 4, 5, 6, 7]) and extracted all items out of
them. This resulted in a list of 2697 terms. The next step was to look through
the recently published texts (i.e., published within the last five years) on similar
subjects to identify additions to lexicographic terminology. This resulted in an
expansion of our list to 2828 terms (i.e., an additional 131 items were added).
This shows that lexicography is continually developing, underlining the need to
create a dictionary that will be able to be updated and enlarged – an electronic
dictionary.

Because the dictionary is still under construction, the current version con-
tains 23 totally developed entries in English (lexicography, dictionary, dictionary

Managing Ontological Complexity: A Case Study 45

structure, megastructure, front matter, outside matter, back matter, macrostruc-
ture, wordlist, microstructure, headword, entry, lemma, sub-lemma, comment
on form, comment on meaning, labels, spelling, pronunciation, grammar, defi-
nition, etymology, usage label) and 22 in Russian (leksikografi�, slovar�,
struktura slovar�, megastruktura, vvedenie, prilo�enie, makrostruk-
tura, slovnik, mikrostruktura, zaglavnoe slovo, vhodna� edinica,
leksema, dobavoqna� semantiko-funkcional�na� harakteristika, in-
formacionna� kategori�, orfografiqeska� pometa, orfo�piqeska�
pometa, grammatiqeska� pometa, �timologiqeska� pometa, stilistiq-
eska� pometa, qastotna� pometa, definici�, kontekst) describing the dic-
tionary structure.

The metalanguge was borrowed from the aforementioned sources (lexico-
graphical dictionaries and text).

Lexicographers need to keep in mind the structure of the dictionary they are
constructing. This means paying careful attention to the dictionarys megastruc-
ture, macrostructure and microstructure. Megastructure always includes outside
matter and a macrostructure (i.e., a wordlist organized either in the alphabetic
or systematic order). Microstructure varies according to purpose. We chose a
users perspective to set up the content of our article structure.

We determined that user-lexicographers in general would like to see articles
with the following components: definition (preferrably a descriptive or synonymic
definition); context; labels; and, synonyms. Therefore, for each entry, our dic-
tionary provides: a headword; definition; grammar and phonetic labels; context;
and, related terms. Terms also have associated sound files with voiving by na-
tive speakers. Additionally, elements of one entry can be hyperlinked with other
entries. For example, the article dictionary has hyperlinks to the articles: refer-
ence work; words; reference book; and, wordbook. Hyperlinks provide users with
quick access to the data stored in the dictionary.

4 Problems of Interpretation

It is very important to concentrate on the user perspective while creating a
dictionary. Every dictionary has to respond to users needs and demands. A lex-
icographer should realize that different users have different reasons for using a
dictionary. That is why the content of MLDT and the detailed description of the
entries serve many purposes. For translators, the system has term equivalents
in different languages and related terms, which may help them make adequate
translations from one language into other(s). Beginners can find many inter-
esting facts in the introductory part, which is available in both English and
Russian. Transcriptions will help users to pronounce terms correctly. Contexts
show how to use entries in better ways. We provide scientists with detailed con-
cept descriptions or definitions with references to sources used. Related terms
can show the placemant of definite concepts in the lexicographical conceptual
system and state the relationship with the other concepts in the system. All the
aforementioned features make this dictionary reliable and user friendly.

46 P.J. Nürnberg and S. Krestova

Another problem, also common in dictionary making, is different ways of
concept structuring in different languages. In every country, the scientific com-
munities have their own way of looking at the same things and because of that
they have slightly different terminology as well.

The structure of the ontologies they have built differes much especially in
relationship between the concepts described within it. A good example of struc-
tural differencies could be seen while comparing two sub-ontologies of a dictinary
microstructure in English and Russian languages (see Fig. 2).

Fig. 2. English and Russian conceptual structures for the term microstructure

Upon inspection, it is clear that their structures are different. This means
that a community of lexicographers look at the dictionary structure problem
from different perspectives. For example, microstructure according to English
lexicographers includes three main elements: headword (or lemma); comment on
form (i.e., grammar, spelling and pronunciation labels); and, comment on mean-
ing (i.e., definition, context, etymology and usage label). According to the Rus-
sian school of lexicography, dictionary microstructure has four main elements:
headword; definition; context (or verbal illustration); and, labels (i.e., comment
on form and meaning excluding definition and context).

Managing Ontological Complexity: A Case Study 47

The next important problem in dictionary making is finding translational
equivalents in two or more languages. It is possible that the concept in one
languge could not be transfrered into another languge, because its translational
equivalent does not exist. This is illustrated by Fig. 3.

Fig. 3. English and Russian conceptual structures for the term macrostructure

In English, the concept megastructure includes two sub-sections: outside mat-
ter (i.e., frontmatter, middlematter and backmatter); and, macrostructure. In
Russian, the concepts outside matter, front matter and middlematter do not exist.
One can talk only about backmatter, because the additional information in Rus-
sian dictionaries is normally kept at the back; the parts such introduction, user’s
guide, wordlist, guide to pronunciation and abbreviations form their own parts in
the dictionary structure. This is a good example how people in the same commu-
nity have different ways of differentiating concepts and ontologies in general.

Sometimes even if the translational equivalent to a certain amount of concepts
exist in another language, they still could have different meanings. For example,
when translating the term middlematter from English into Russian, some indi-
viduals in the Russian school of lexicpgraphy would claim that middlematter
is everything that is in the middle of a dictionary – a wordlist, including the
tables and illustrations inside it, if any. If there are no tabels and illustrations
in the dictionary, then it is the wordlist itself, which is the macrostructure of

48 P.J. Nürnberg and S. Krestova

a dictionary. However, if you will look at the ontology of megastructure given
above, it is absolutly clear that English lexicographers define middlematter dif-
ferently. For them, it is separate from a macrostructure field, which includes
list of grammatical terms, maps and diagrams put in the middle of a wordlist
in a reference book. This example shows that there are still many problems in
ontology creation and a dictionary making processes.

The aforementioned problems are true not only when comparing two on-
tologies on two or more different languages; they can be found even within one
languge society. One of the brightest examples is the scientific attitude to slang.
If one considers a general purpose dictionary, one will find some well known
slang words, such as ass (arse), dick, fuck, shit, bastard, etc. Linguists disagree
as to whether slang should be included in general purpose dictionaries – ones
that describe the whole language culture, or whether it should be avoided and
included only in slang dictionaries, or even if it should be defined at all.

Some linguists think that slang is too abusive and should be avoided in the
dictionries that describe national language. However, if we create a dictionary
that reflect the way we speak, and we use slang in everyday life, then what should
we do? Another group of linguists thinks that slang is a part of our language and
our culture and if people use it in their language it should be described in the
dictionary together with any other common words existing in the language. This
question is still open. Some people think that defining slang is easy, but what do
we call slang? Slang includes not only euphamisms (the abusive lexic), but also
a language of small communities like students, lawyers, computer scientists and
so on. Should we compare this case with general purpose and special purpose
dictionaries? It is true that some professional terms from different branches of
science, like biology, medicine, chemistry, computer science, linguistics, mathe-
matics, etc., were included into general purpose dictionaries because we use them
in our everyday life. If we include terminology in the academic dictionary, why
should we not include slang?

5 Computer Support

Human judgement, as illustrated above, is still and will always be a fundamental
component of ontology construction. With this in mind, we feel that tools that
allow researchers to express divergent opinions and emergent understandings
are well-suited to supporting ontological work. Many hypermedia and structural
computing tools meet the needs of ontology workers by allowing flexible and
dynamic knowledge representations. Hypermedia tools complement other tech-
nologies that focus on automatic ontology construction (e.g., [8, 9]).

The Construct project [10] has been under development for the past five
years. It is comprised of a suite of hypermedia tools that are designed for ex-
pressing incomplete, inconsistent, and/or dynamic knowledge. Different tools in
the Construct suite focus on different structural domains, or types of knowl-
edge structures. There is currently support within Construct for navigational,
argumentation, spatial, metadata, and taxonomic structures. We are currently

Managing Ontological Complexity: A Case Study 49

investigating adding support for knowledge structures used by lexicographers
in their work processes. Because of Construct’s focus on tools supporting the
development of new structural domains, there is relatively low overhead in the
implementation of such support. Our work is therefore focused on detailed ob-
servation of the lexicographic work process and the resultant design of structure-
based hypermedia tools.

Even with the current set of tools, however, we have noticed that hypermedia
tools can provide significant advantages to lexicographers. Argumentation struc-
tures, for example, allow the construction of spaces capturing rationale behind
decision processes. Navigational tools (i.e., tools that provide a “hyperlinking”
interface to traversal of associations among knowledge items) can also provide
an intuitive way of constructing and communicating complex spaces.

6 Conclusions

In this paper, we have considered lexicographic work as a prototypical example
of ontological work. We have shown that, even though automatic ontology con-
struction tools may be useful in certain circumstances, they are insufficient alone
for supporting knowledge workers enagaged in ontology construction. Instead,
we also need tools that allow workers to capture inconsistent and/or incomplete
knowledge, and allow multiple versions of concpetual structuring to underlie the
same system. Our initial results have shown that hypermedia tools are well-
suited to the task of helping knowledge workers represent and manipulate the
complex spaces that underpin ontologies.

References

1. Kang, D., Xu, B., Lu, J., Wang, P., Li, Y.: Extracting sub-ontology from multiple
ontologies. In: Proceedings of the OTM Workshops 2004. Volume LNCS 3292.,
Springer Verlag (2004) 731–740

2. De Leenheer, P.: Revising and managing multiple ontology versions in a possible
worlds setting. In: Proceedings of the OTM Workshops 2004. Volume LNCS 3292.,
Springer Verlag (2004) 798–809

3. Bergenholtz, H., Cantell, I., Fjeld, R., Gundersen, D., Jónsson, S., Mikkelsen, H.K.,
Svénsen, B.: Nordisk Leksikografisk Ordbok. Universitetsforlaget, Oslo (1993)

4. Burkhanov, I.: Lexicography: A Dictionary of Basic Terminology. Wydawnictwo
Wyzszej Szkoly Pedagogicznej, Rzeszów (1998)

5. Hartmann, R.R.K., ed.: Lexicography. Principles and Practice. Academic Press,
London (1983)

6. Hartmann, R.R.K., James, G.: Dictionary of Lexicography. Routledge, London
(1998)

7. Kipfer, B.A.: Wordbook on Lexicography: A Course for Dictionary Users with a
Glossary of English Lexicographical Terms. University of Exeter (1984)

8. Alani, H., Kim, S., Millard, D.E., Weal, M.J., Hall, W., Lewis, P.H., Shadbolt, N.R.:
Automatic ontology-based knowledge extraction and tailored biography genera-
tion from the web. Technical Report Equator-02-049, University of Southampton,
Southampton, UK (2002)

50 P.J. Nürnberg and S. Krestova

9. Mena, E., Illarramendi, A., Goñi, A.: Automatic ontology construction for a
multiagent-based software gathering service. In: CIA ’00: Proceedings of the 4th
International Workshop on Cooperative Information Agents IV, The Future of
Information Agents in Cyberspace, Springer-Verlag (2000) 232–243

10. Wiil, U.K.: Lessons learned with the Construct development environment. In: Pro-
ceedings of the First Metainformatics Symposium. Volume LNCS 2641., Springer
Verlag (2002) 9–17

Looking Beyond Computer Applications:
Investigating Rich Structures

Claus Atzenbeck and Peter J. Nürnberg

Department of Software and Media Technology,
Aalborg University Esbjerg,

Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
{atzenbeck, pnuern}@cs.aaue.dk

Abstract. Spatial structure supporting applications offer an abstract
level of what can be found in the real world. However, in many systems,
objects are aligned straight, rotation is not possible, they can be resized
easily and can hold more text than is visible on the screen. Paper and
structures created with paper seem to be more limited: Straight align-
ment is not possible without spending much time; paper can hardly be
resized without damaging it; and piles may fall down if they become too
tall. However, a closer look shows that paper structures offer much more
attributes and dependencies than any current spatial structure support-
ing application. In this article, we compare paper structures to a selection
of computer applications. We argue that the observed small additions
with paper carry information which improves finding and organizing.

1 Introduction

An important task in knowledge work is structuring knowledge. This supports
the ability to exchange knowledge, easy traversal, and fast retrieval. To extend
the capability of the human mind, several tools have been created. A long time
ago, people started to write information on paper. They compiled scriptures and
cross-referenced them. Later, machines were designed to offer a higher level of
structuring.

In the last century, Vannevar Bush described his idea of how a machine can
augment the human mind and described Memex [4]. The name is an abbreviation
for Memory Extender. This machine was designed to “build a trail of . . . items”
which can be followed again at any time later [4]. Decades later, this idea had a
very strong influence on a whole field of research: hypertext [27]. To Ted Nelson,
who coined the term, hypertext was seen as “a body of written or pictorial
material interconnected in such a complex way that it could not conveniently
be presented or represented on paper” [22]. The overall goal was to extend the
human mind as Douglas Engelbart, another hypertext pioneer, has formulated:

“By ‘augmenting human intellect’ we mean increasing the capability of
a man to approach a complex problem situation, to gain comprehension
to suit his particular needs, and to derive solutions to problems.” [10]

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 51–65, 2004.
c© Springer-Verlag Berlin Heidelberg 2005

52 C. Atzenbeck and P.J. Nürnberg

During the following years, several hypertext systems were developed. All were
based on a node–link model. In order to unify the terminology and give a standard
model for such systems, the Dexter Hypertext Reference Model [13] was developed.
This kind of hypertext is currently known as navigational or associative hypertext.

Later, special structure types were brought to the hypertext community, such
as taxonomies [31] or argumentation structures [7, 8]. Influenced by two systems,
gIBIS (argumentation support) and NoteCards (card metaphor with associative
links), the first so called spatial hypertext system Aquanet [20] was developed.
Originally, its developers focused on argumentation support rather than on how
people use paper cards in the real world. However with Aquanet ’s successor
VIKI [21] and VKB [26] the latter mentioned aspect became more important.
Differences and similarities between spatial hypertext applications and generic
visualization tools have been discussed recently [18].

Beside spatial hypertext applications, many other systems use metaphors in
order to support structuring (e. g., many graphical based file system browsers.)
They offer folders on which the user can drop documents. Other instances are
card based document viewers (e. g., Adobe Acrobat Reader) which allow the dis-
play of pages of a document side by side in WYSIWYG mode, as they might be
placed on a table.

The amount of content is increasing rapidly. One way to address this prob-
lem is to improve content engineering tools [25]; another is to support more
informative structures without increasing cognitive overload. This is important
especially for structures that are limited to spatial dimensions. Our approach
focuses on the latter mentioned aspect, but goes beyond computer applications.
A closer look shows that paper structures offer attributes and dependencies not
found in any spatial structure supporting application. In this article, we com-
pare structures created with paper to a selection of computer applications. We
argue that the small additions with paper structures include information that
improves finding and organizing. This will show that applications fail to leverage
these advantages if they focus on a higher level of abstraction.

In Sect. 2, we relate our approach to others regarding how people use pa-
per to organize their work. With this information, we will discuss paper-based
metaphors on computers in Sect. 3. In Sect. 4, we will conclude and point to our
future investigations.

2 Real World Structures

This section gives some idea of how real world structures are discussed in the
field of computer science. We will point out how our approach compares to past
efforts.

It is an interesting observation that there is only little related research work
published. (“Despite the past importance of paper archives in office work, there
are still relatively few studies of their nature and function”1 [32].)

1 In this context, [32] refers to [5, 16, 17, 19]. Other related work is [28, 15, 11].

Looking Beyond Computer Applications: Investigating Rich Structures 53

One oft-cited article about how people structure their desks was written by
Malone [19]. How do we distinguish our work from his? First, Malone applies a
high level of abstraction to his structure description. Figure 1 shows two office
maps that Malone was analyzing. All paper pile representations are right-angled.
It can be assumed that this does not reflect the real world, especially not the right
map, which is “filled with loosely stacked piles of mixed content” [19]. Malone
does not focus in detail on how piles look like. Rotation is not considered.

Fig. 1. Maps of Two Offices by Malone [19]

In comparison to that, we strongly focus on a more detailed description of
the shape of piles and other structures as well as on additional aspects, such
as binding mechanisms. With “binding mechanism” we describe the force which
binds objects. Examples are depicted in Fig. 2.

Fig. 2. Grouping Mechanisms, Sorted by Grouping Strength

Another difference can be recognized in terminology and level of details.
Referring to [28], Malone’s basic structure types are file and pile:

“[F]iles are units where the elements (e. g., individual folders) are ex-
plicitly titled and arranged in some systematic order (e. g., alphabetical
or chronological). In some cases, the groups themselves (e. g., entire file
drawers) are also explicitly titled and systematically arranged; in other
cases, they are not. . . . In piles, on the other hand, the individual ele-
ments (papers, folders, etc.) are not necessarily titled, and they are not,
in general, arranged in any particular order.” [19]

54 C. Atzenbeck and P.J. Nürnberg

We focus on the structure only, not on the “content”. We do not distinguish
between ordered and unordered according to its content. Malone’s examples of
an unordered bookshelf, which he calls a pile, and sorted shelves in a library,
which he calls files, would be the same to us.

3 Paper-Based Metaphors on Computers

We will compare paper structures with three computer systems. Two are known
as spatial hypertext applications: Visual Knowledge Builder (VKB) 1.50 [12, 26];
and, Tinderbox 2.2 [3, 9]. One is a diagram and chart application: OmniGraffle
Pro 3.1.2 [24]. All applications are tested on Mac OS X 10.3 ; VKB is imple-
mented in Java 1.3, Tinderbox and OmniGraffle are native Mac OS applications.
We see all three as applications used for spatially structuring of knowledge.

There is a survey on how students use VKB for magnetic poetry [26]. Figure 3
shows two pictures which are taken from that publication. We analyze them as
an example to see differences of real world objects and VKB. We also analyze
relevant features and limitations in Tinderbox and OmniGraffle.

3.1 Rotation and Sloppiness

As Fig. 3 depicts, all objects of the real world magnetic poetry show a certain rota-
tion. Some yellow sticky notes seem to be rotated on purpose; at least the rotation
angle is significantly different. Neither VKB nor Tinderbox can rotate objects.

OmniGraffle allows rotation any object, as shown in Fig. 4. Rotation can be
applied using the mouse by pressing the command key. It allows 360 different
rotation positions. The current angle is shown in a pop up window during the
rotation process.

Even though OmniGraffle offers rotation objects, rotation must be performed
explicitly. Most rotation on real world objects emerge while building a structure,
as the magnetic poetry picture shows. On the other side, even intended rotation,
as we assume for the yellow sticky notes shown in Fig. 3, cannot be taken over
to VKB, because rotation is not supported.

Another observation is that most real world structures do not follow an exact
grid, whereas all three selected application support that: Tinderbox has an in-
visible fixed grid of factor 0.125 of the default height of a note.2 The grid cannot
be switched off. VKB has a fixed grid which can be switched on and off. It is
visible through dots as depicted in Fig. 5. The screenshot in Fig. 3 does not have
the grid switched on.

OmniGraffle has a grid which size can be chosen arbitrarily and which can
be switch on and off. As shown in Fig. 5, it has several additional visual features,
e. g. if it should be dominant or how detailed the grid should be divided in smaller
parts, etc.

2 This information was given by Mark Bernstein, Chief Scientist of Eastgate Systems
Inc., in a personal e-mail, dated 2004-05-06.

Looking Beyond Computer Applications: Investigating Rich Structures 55

Fig. 3. Comparison of Structure – Real World and Spatial Hypertext Application (Pic-

tures taken from [26] with kind permission of the first author)

Another aspect are alignment functions. Tinderbox does not offer any, but
VKB and OmniGraffle do, as shown in Fig. 6. Those can be used to automat-
ically align selected objects. Beside the standard alignment functions like hor-
izontal or vertical alignment, VKB allows the arrangement of objects as stack
as depicted. OmniGraffle has additional functions to align objects to the grid,

56 C. Atzenbeck and P.J. Nürnberg

Fig. 4. Rotation in OmniGraffle

Fig. 5. Grid in VKB (a) and Grid and Grid Tool in OmniGraffle (b)

which can be seen in Fig. 5 as part of the grid inspector window. In the real
world, such behavior exists partly. For example, loose paper on a desk can be
transformed into a stack easily by moving the hand over the table and collecting
the paper at once. However, the result will not look as perfectly aligned as it
does in any of the computer application.

Rotation, whether being done on purpose or through emerging behavior and
sloppiness, adds individual characteristics to spatial structures. The rotation of
an object may express that this object is important; sloppy shaped piles may show
that they are more often used, etc. For these reasons, we argue that rotation – done
on purpose or done automatically by the system during structuring (e. g., when ob-
jects are moved) – helps the user to remember structures more easily and supports
quick finding. If all documents show exactly the same direction, other aspects have

Fig. 6. As Stack Aligned Nodes in VKB (a) and Alignment Tools in VKB (b) and

OmniGraffle (c)

Looking Beyond Computer Applications: Investigating Rich Structures 57

to be perceived for finding (e. g., reading parts of the content.) It is likely that in
many cases this takes longer than perceiving and processing rotation.

We expect that the user will rotate very important documents in order to
find them or to be reminded more easily later. We also expect that people will
not start to align documents precisely but accept the slight rotation done by the
system based on the simulation of paper.

3.2 Shape, Size, and Collection Objects

Paper used in offices usually has a rectangular shape. VKB as well as Tinderbox
follow this idea and provide only rectangular nodes. However, external graphics
may be included that show shapes other than rectangular. OmniGraffle is the only
application among the observed ones that allows the creation of arbitrary shapes.A
stencil inspector allows to drag and drop any predefined shape onto the workspace.

Size is another important difference. The object size of the magnetic poetry
shown in Fig. 3 is related to the word length. The height seems to be equal for
all magnet objects. In most offices, the paper size used relates in most cases to
standards and does usually not get changed (e. g., by cutting the paper.) Once
a paper is cut, it is difficult to extend it again. All three observed computer
applications, however, allow the resizing of objects without damage.

Fig. 7. VKB ’s Context Menu for Nodes

Figure 3 shows two yellow sticky notes at the lower right corner of the real world
picturethatareputtogether.Thereasonisthatthecontentatthefirstpaperbecame
too large. A second note was put to extend the first one. The picture below shows
some equivalent notes in VKB. Also here, the text exceeds the visible size of the
note. However, a closer look shows that the note acts like a window which displays
the text only partly. The user is able to scroll the text with the text cursor. Also,
resizing the note will cause more text to be visible. Additionally, VKB offers scroll
bars, automatic sizing, and line wrap. These functions can be switched on and off
individually for nodes at any time through the context menu shown in Fig. 7.

58 C. Atzenbeck and P.J. Nürnberg

Fig. 8. Node with Heading in Map View and its Node Content in Tinderbox (a) and

Nodes with Different Attributes in OmniGraffle (b)

Tinderbox displays as much text as possible on a node and hides the rest. Only
the node heading is represented on the node. The user cannot scroll headings
as with VKB. A heading can be edited through a dialog window. Also, a node
can contain text beside the heading, but it will not be displayed within the
spatial representation; it can be displayed in a separate window or be exported
in another format (e. g., HTML.) The spatial representation of a node with a
long heading and its content window is shown in Fig. 8.

OmniGraffle offers three modes for handling texts that are too long. Fig. 8
gives an example for each mode. The left one continues printing the text over
the node’s border. The second node just cuts the text. The last one adjusts the
node’s height automatically according to the space the text needs.

A collection object follows themetaphor of a drawer or box inwhich the user can
put things to collect them. OmniGraffle does not support them. One example of a
VKB collection can be seen in Fig. 3. It looks like an additional window. It has a
different background and a title. The scroll bars indicate that the collection space is
largerthanthevisiblearea;howevertheyalsocanbeswitchedoff.VKB hasfunctions
to scale the content of collection objects. In VKB, collections are different objects
than nodes.

In Tinderbox any node can also serve as a collection object. The first picture
of Fig. 10 depicts a node which contains other nodes. Similar to VKB, it contains
a single line with the node’s title. However, it shows a content preview at a fixed
factor. It’s size can be changed at any time by changing the size of the collection
object. The last picture of Fig. 10 shows the inside of the collection object. The
size of the containing node is indicated as a frame on the background. This is
also the area which is visible at the collection node itself.

In the real world, people use drawers, boxes, etc. to collect objects. Such
collection facilities have specific borders that are basically the same, inside and
outside. This limitation forces reorganization whenever a container becomes too
small (e. g., by starting a second container.) In comparison, VKB or Tinderbox
collections can consist of a larger space inside than its shown size at the outside.
A computer application can simulate the real world behavior by limiting the
possible number of objects for collection objects or binding mechanisms.

Text on paper is limited to the paper’s size. This has the advantage that
large texts can be found by approximating the amount of paper. This can be
simulated in a computer by allowing only fixed size documents without scroll
bar, writing beyond its border, or the possibility resizing a document. Whenever

Looking Beyond Computer Applications: Investigating Rich Structures 59

there is more text than can be put on one page, another page has to be created.
These pages must be movable individually if no binding mechanism is applied.

In addition to the simulation of binding mechanisms such as binders, sta-
pled documents, or loose piles, we claim that fixed size documents statistically
significantly decrease the time for finding due to the following reasons:

1. Objects can be found by perceiving the number of documents they contain.
For example, a 500 pages PDF file will have 500 individual pages displayed.3

2. The user is forced to reorganize structures if they become too large. For
example, in the real world, a binder can hold only a certain number of sheets.
If this number has to be extended, another binder must be created. This
means that it is less likely that one level of structure becomes too complex,
because it has to be reorganized before it becomes too large. Additional
levels are pushed into an existing structure. Less complex structure levels
will help to find information.

3. Since there is a fixed size for all documents, there is no document that is
harder to find than others because its small size.4

3.3 Zooming

Zooming can be seen as jumping between structure levels. This is done very
smoothly in the real world. As an example imagine a secretary who needs to
read about a certain meeting. The paper is placed in a binder in another office.
The first structure level is how the offices relate to each other spatially. When
she enters the right office, she dives into the next structure level, the spatial
ordering of the furniture. She continues to zoom into the bookshelf and resolves
the structure there until she finds the right binder. The next structure level is
the inside of this particular binder, which she has to process. She will find the
paper about the meeting. The secretary is finally looking for the right paragraph
and finally she moves to the structure level of sentences and below while she is
reading.

As this example shows, there are may different structure levels. A person
usually can switch between them very smoothly, in many cases even without
noticing. In some cases, it also can be observed that someone switches back and
forth constantly, e. g. when several papers inside different binders have to be
found and read.

Compared to this, the zooming features of current computer applications are
poor. The observed ones allow basic zooming. VKB offers three different zoom

3 This includes 3D or semi-3D representation (e. g., darkness of shadow or semi-3D
representation of the height of a pile, in order to show how many pages are on a
heap, stack, etc.)

4 We are aware of the fact that different sizes can be seen as an attribute that helps to
distinguish between documents and therefore helps to find objects faster. However,
also the empty space of a fixed size document with little text on it versus a fully
covered page can be seen as an attribute which does this. Therefore, having different
document sizes versus different border sizes does basically the same in this respect.

60 C. Atzenbeck and P.J. Nürnberg

Fig. 9. Zoom Functions and Floating Miniature Workspace Window in VKB

scaling directly by menu, as shown in Fig. 9: 125%, 80 %, and 100 %. They apply
to the current scaling. The scale factor can also be set arbitrarily via a dialog
window. Tinderbox offers a pop up list at the spatial structure windows with
zoom levels from −4 to 4. The middle position is called “Normal”. Similar to
Tinderbox, OmniGraffle has a zoom pop up menu. It shows basic zoom scales
in percentage which can be selected by one click. The menu also allows one to
enter an arbitrary zoom factor manually. In addition to this, OmniGraffle maps
the mouse wheel to zoom in and out when holding the command key. However,
a large number of objects slow down smooth zooming significantly.

As shown in Fig. 9, VKB offers a floating miniature workspace window which
gives an overview of the complete workspace. The user can imitate quick zooming
by switching between the main window and the miniature. The red border shows
the visible area at the main window. It can be moved directly using the mouse.

OmniGraffle Pro allows an arbitrary number of views of the same document
represented in individual windows. This can be used to have one window scaled
100% and another one 10 %. Changes can be made to both and are seen imme-
diately in all views. This allows switching smoothly between an overview and a
closer look. However, there is evidence that a separate overview causes a slower
performance in finding [14].

There is another kind of zooming in Tinderbox. It is an animation of moving
into a node. Fig. 10 shows a sequence of pictures. The duration and the number
of visible zoom steps depend on the window size, the processor speed, and the
number of items at the destination space. The depicted example had 5 different
zoom steps visible. The duration of the whole process was approximately 0.3 sec.

Even though this visualization is mostly smooth, it cannot be stopped in
between steps. It shows a node as start state and the node’s space as end state.

Looking Beyond Computer Applications: Investigating Rich Structures 61

Fig. 10. Sequence of Zooming into an Object in Tinderbox (Five Different Zoom Steps

Visible in Total, Duration Approximately 0.3 Sec)

It is not possible to stop in between or have a node’s content side by side to
objects in other structure levels, as may be the case at the real world.

These applications’ zooming functions are not satisfying compared to the
real world. They require an additional request of an exact number of how much
scaling the user wants to apply. Closest to the real world is OmniGraffle when
using the mouse wheel for zooming.

Inspired by the real world, we believe in easy applicable and smooth zooming
with no predefined zoom steps for spatial structuring tasks. Basically, the user
should be able to use any zoom factor inside a reasonable scale. We claim that
smooth zooming will decrease the time for finding documents or structures statis-
tically significantly. Based on the visible change without breaks in between, the
user has a better orientation of where a zoom call leads to spatially and he/she
is able to increase or decrease the visible workspace area very quickly. Because of
this, the time for reorganizing objects will be also statistically significant faster.

Fig. 11. Sequence of Resizing and Repositioning of Windows with Exposé on Mac

OS X (Duration Approximately 0.23 sec)

One example can be experienced using Exposé, a built-in function of Mac
OS X since version 10.3. It reduces the size of windows and moves them side by
side so that the user can select the desired window very quickly. Fig. 11 shows
some screenshots taken during this transformation, which lasts approximately
0.23 sec. in total. With shift key pressed, the speed is reduced: The same action
takes over 2.5 sec. However, it can be assumed that the user gets a better under-
standing of where things go. This is also supported by the fact that the contents

62 C. Atzenbeck and P.J. Nürnberg

of visible windows do not freeze. For example, running movies don’t stop when
Exposé is activated.

Another related approach is Piccolo, an open source Java library which allows
the building of two dimensional zoomable user interfaces. Piccolo is the successor
of Jazz [2]. One aim is to support smooth and continuous zooming – so called
“semantic zooming” – for a large number of arbitrary objects. There is evidence
that zooming of workspaces with many objects improves the recall compared to
the use of scrollbars [6].

A similar survey compares the recall of a zoomable user interface with an
overview of the shown workspace to one without [14]. It has been shown that
the finding task was solved faster without an overview, even though 80 % of the
subjects preferred to have one.

The mentioned examples support our hypothesis that smooth zooming helps
to find objects on a 2D workspace faster compared to fixed zoom steps or the use
of widgets like scrollbars or additional overviews. Additionally, we expect that
the user’s subjective satisfaction will be increased and that the type of created
structure will change mainly from classification to spatial structures.

3.4 Other Observations

Other observations we made cover 3D, simulation of gravity and friction, desk
size, and interaction.

We have found that real world behaviors, like 3D, friction and gravity, are
used to relate objects. For example, a small paper on top of a large one will also
be moved when the large one is being moved. None of the observed computer
application allows this, except OmniGraffle when grouping is switched on. How-
ever, this has to be done explicitly and is only a poor simulation of real world
forces.

Desk size is another difference. For example, according to our tests, Omni-
Graffle allows a maximum document size of 3527.8 km× 3527.8 km, which is an
area larger than the USA or Canada. In the real world, there is no desk that can
be even nearly as big. The user is forced to reorganize according to the given
desk limitation. This has influence in how the user structures information.

Objects in computer applications are mostly moved differently compared to
objects in the real world. The most common input devices are keyboard and
mouse. A direct touch on the visible object does not have any result on ordi-
nary screens. Touch screens close this gap to some extent. They allow direct
manipulation at the same spot at which the object is displayed. Also writing on
the screen directly becomes possible. Digital output devices in general are small
compared to real world structures which mostly take much more space. Large
screens or projections on tables (e. g. described by [1]) offer much more space for
representing digital documents.

Looking Beyond Computer Applications: Investigating Rich Structures 63

4 Conclusion and Future Work

Applications which can be used for spatial knowledge structuring are based on
the metaphor of cards and trays. They implement an abstract level of the real
world. Details like emerging rotation or sloppy alignment are left out and in
many cases even seen as disturbing. Smooth zooming or limitations like fixed
size objects are not implemented.

In our paper we pointed out that it is likely that those details at the real
world carry additional information and possibilities of interactions for spatial
structuring in knowledge work. It is likely that this information can be processed
in parallel with no additional cost, since a person usually does not process or
reflect it consciously. In order to prove this, we will implement a test environ-
ment which enables both kinds of rotation, emerging and purposeful, fixed size
documents with binding mechanisms, and smooth zooming. We will test the
speed for organizing and recalling information spatially with and without those
features switched on. Structural computing systems [33] offer a good environ-
ment to implement our application, including structure services for rich spatial
structures and structure awareness.5

We follow a different paradigm in graphical user interfaces for spatial struc-
turing in knowledge work: The detailed implementation of metaphors. This
would contradict with systems nowadays, which seem to extend the capabilities
of the real world and cut down imprecise behavior. They cut down additional
information, as we have shown, which is helpful for the user.

Paper is a medium with thousands years of history. People are very used to
it and have lots of experience in organizing it. Lessons learned from observing
paper structures in the real world, our new approach in computer science focuses
on rich structures to help “augmenting human intellect” [10], as Engelbart was
advertising for already in 1962.

References

1. M. S. D. Ashdown. Personal projected displays. Technical Report 585, University
of Cambridge Computer Laboratory, 3 2004.

2. B. B. Bederson, J. Meyer, and L. Good. Jazz: an extensible zoomable user interface
graphics toolkit in java. In Proceedings of the 13th Annual ACM Symposium on
User Interface Software and Technology, pages 171–180. ACM Press, 2000.

3. M. Bernstein. Collage, composites, construction. In Proceedings of the 14th ACM
Conference on Hypertext and Hypermedia, pages 122–123. ACM Press, 2003.

4. V. Bush. As we may think. The Atlantic Monthly, 176(1):101–108, 7 1945.

5 An important aspect is the implementation of data, structure, and behavior as differ-
ent views [23, 30] for rich structures and binding mechanisms, which affects especially
the structure services. A recent conference contribution shows an example of how
this paradigm can be applied to an application [29].

64 C. Atzenbeck and P.J. Nürnberg

5. I. Cole. Human aspects of office filing: implications for the electronic office. In
Proceedings of the 26th Annual Meeting of the Human Factors Society, pages 59–
63, 1982.

6. T. T. A. Combs and B. B. Bederson. Does zooming improve image browsing? In
Proceedings of the 4th ACM International Conference on Digital Libraries, pages
130–137. ACM Press, 1999.

7. J. Conklin and M. L. Begeman. gibis: a hypertext tool for team design deliberation.
In Proceeding of the ACM Conference on Hypertext, pages 247–251. ACM Press,
1987.

8. J. Conklin and M. L. Begeman. gibis: a hypertext tool for exploratory policy
discussion. In Proceedings of the 1988 ACM Conference on Computer-Supported
Cooperative Work, pages 140–152. ACM Press, 1988.

9. Eastgate Systems. TinderboxTM for Macintosh v. 2.2. User’s Manual & Reference.
Eastgate Systems, 2004.

10. D. C. Engelbart. Augmenting human intellect: A conceptual framework. Summary
Report AFOSR-3233, Standford Research Institute, 10 1962.

11. D. Frohlich and M. Perry. The paperful office paradox. Technical Report HPL-94-
20, Hewlett-Packard Laboratories, 3 1994.

12. K. Gupton and F. Shipman. Visual Knowledge Builder version 0.70. The user’s
manual. Center for the Study of Digital Libraries, Texas A&M University, 2000.

13. F. Halasz and M. Schwartz. The dexter hypertext reference model. Communica-
tions of the ACM, 37(2):30–39, 2 1994.

14. K. Hornbæk, B. B. Bederson, and C. Plaisant. Navigation patterns and usability
of zoomable user interfaces with and without an overview. ACM Trans. Comput.-
Hum. Interact., 9(4):362–389, 2002.

15. F. Khan. A survey of note-taking practices. Technical Report HPL-93-107,
Hewlett-Packard Laboratories, 12 1994.

16. A. Kidd. The marks are on the knowledge worker. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 186–191. ACM Press,
1994.

17. M. Lansdale. The psychology of personal information management. Applied Er-
gonomics, 19:55–66, 3 1988.

18. K. Lyon and P. J. Nürnberg. Applying information visualisation techniques to
spatial hypertext tools. Proceedings of the MIS’04 Symposium, Salzburg, Austria
(in print), 2004.

19. T. W. Malone. How do people organize their desks? implications for the design of
office information systems. ACM Trans. Inf. Syst., 1(1):99–112, 1983.

20. C. C. Marshall, F. G. Halasz, R. A. Rogers, and W. C. Janssen. Aquanet: a
hypertext tool to hold your knowledge in place. In Proceedings of the 3rd Annual
ACM Conference on Hypertext, pages 261–275. ACM, ACM Press, 1991.

21. C. C. Marshall, F. M. Shipman, and J. H. Coombs. Viki: spatial hypertext sup-
porting emergent structure. In Proceedings of the 1994 ACM European Conference
on Hypermedia Technology, pages 13–23. ACM Press, 1994.

22. T. H. Nelson. Complex information processing: a file structure for the complex,
the changing and the indeterminate. In Proceedings of the 1965 20th National
Conference, pages 84–100. ACM Press, 1965.

23. P. J. Nürnberg, U. K. Wiil, and D. L. Hicks. A grand unified theory for structural
computing. In D. L. Hicks, editor, Metainformatics. International Symposium
(MIS’03), Graz, Austria, volume 3002 of Lecture Notes in Computer Science, pages
1–16. Springer, 2004.

Looking Beyond Computer Applications: Investigating Rich Structures 65

24. Omni Group. OmniGraffle 3, 2003.
25. S. Reich. Content engineering: Bridging the gap between content creation and con-

sumption. a position statement for mis 04. Proceedings of the MIS’04 Symposium,
Salzburg, Austria (in print), 2004.

26. F. Shipman, R. Airhart, H. Hsieh, P. Maloor, J. M. Moore, and D. Shah. Visual and
spatial communication and task organization using the visual knowledge builder. In
Proceedings of the 2001 International ACM SIGGROUP Conference on Supporting
Group Work, pages 260–269. ACM Press, 2001.

27. R. Simpson, A. Renear, E. Mylonas, and A. van Dam. 50 years after “as we may
think”: the brown/mit vannevar bush symposium. Interactions, 3(2):47–67, 1996.

28. D. Tsichritzis. Form management. Communications of the ACM, 25(7):453–478,
1982.

29. A. Ulbrich and K. Tochtermann. Applying structural computing paradigms to
domain analysis by example of elearning in higher education. Proceedings of the
MIS’04 Symposium, Salzburg, Austria (in print), 2004.

30. M. Vaitis, M. Tzagarakis, K. Grivas, and E. Chrysochoos. Some notes on behavior
in structural computing. In D. L. Hicks, editor, Metainformatics. International
Symposium (MIS’03), Graz, Austria, volume 3002 of Lecture Notes in Computer
Science, pages 143–149. Springer, 2004.

31. H. Van Dyke Parunak. Don’t link me in: set based hypermedia for taxonomic
reasoning. In Proceedings of the 3rd Annual ACM Conference on Hypertext, pages
233–242. ACM Press, 1991.

32. S. Whittaker and J. Hirschberg. The character, value, and management of personal
paper archives. ACM Trans. Comput.-Hum. Interact., 8(2):150–170, 2001.

33. U. K. Wiil, D. L. Hicks, and P. J. Nürnberg. An agenda for structural computing
research. Proceedings of the MIS’04 Symposium, Salzburg, Austria (in print),
2004.

Towards a Generic Building Block for
Component-Based Open Hypermedia Systems

Omer Ishag Eldai, Peter J. Nürnberg, Uffe K. Wiil, and David L. Hicks

Department of Software and Media Technology,
Aalborg University Esbjerg,

Niels Bohrs Vej 8,
DK-6700 Esbjerg, Denmark

{omer, pnuern, ukwiil, hicks}@cs.aue.auc.dk

Abstract. In this paper, we propose a framework for component-based
open hypermedia systems that provides developers with ready-made and
extensible communication and distribution facilities. We begin by ana-
lyzing the requirements for such a framework through an examination of
existing systems. We then describe our framework, and tie this back to
related work in the metainformatics field.

1 Introduction

Due to current trends in design and development of component-based open hy-
permedia systems (CB-OHSs), these systems are becoming more modular, flex-
ible, and open. In that direction, we are trying to further advance the state of
art by proposing a generic building block for system development that improves
architectures, making them more flexible, and hence making systems easier to
build and easier to update. To achieve this, we have done a survey to identify
aspects and issues in building systems. We used this survey to inform the design
and implementation of a proposed building block for CB-OHSs to address all
the aspects identified in our survey.

Distribution and interoperability have become very important in today CB-
OHSs, since users and services are massively distributed. Hence system devel-
opers have to consider these aspects in early system design stages. Otherwise, it
will be very difficult to support these features.

The results that we have drawn from the survey of some prominent CB-OHSs
showed that most existing systems do not satisfy users and developers needs.

An aspect is a desirable feature. This feature when introduced into the system
increases the complexity or effort needed in system design and development. We
named them as aspects, because we believe that introduction of any of these
aspects to the system increases the complexity of its design and development.
We have divided these aspects into two categories according to the way it is
addressed (direct/indirect) by our proposed building block.

The rest of the paper is organized into the following parts: Sect. 2 provides a
historical introduction to the research area of CB-OHSs. A brief definition of the

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 66–84, 2004.
c© Springer-Verlag Berlin Heidelberg 2005

Towards a Generic Building Block for CB-OHSs 67

set of the aspects that we believe to be considered in designing CB-OHSs is given
in Sect. 3. In Sect. 4, we present the analysis framework used to perform the
survey, and the scenarios supporting the importance of those aspects. Section 5
shows the important results that we have drawn from the survey. The proposed
building block, its advantages, its improvements on aspects, and its support for
users and developers of CB-OHSs are detailed in Sect. 6. Section 7 describes
the relations between the aspects. Related work including structural computing
and recent trends in design of CB-OHSs are shown in Sect. 8. Finally, Sect. 9
includes our conclusions and future work.

2 Hypermedia Systems History

The history of hypermedia systems can be characterized by a set of revolutions.
In each revolution, there is a group of hypermedia systems that have been de-
veloped. These systems share common criteria and features and mostly address
the same set of issues. In this history review, we will describe the revolution and
then highlight common features or trends of the systems developed at that time.
We will also provide names of some of the prominent systems that represent
that era.

2.1 Bush Era (1945–1987)

This era began in 1945 when the hypermedia pioneer V. Bush published his ideas
about MEMEX [1]. Based on Bush’s ideas, a group of systems were developed
such as KMS [2], NoteCards [3], and Intermedia [4]. The systems developed
during this period were monolithic systems[5].

2.2 Dexter Era (1988–1996)

After the Dexter Model was introduced to the hypermedia research commu-
nity [6, 7, 8], a group of systems implemented those ideas. As a result many
advances occurred in hypermedia systems development. Examples of these ad-
vances include the client-server architecture, openness of architectures, integra-
tion tools, and development tools. Many systems were developed during this
era such as DHM [9, 10], Microcosm [11], HOSS [12], HyperDisco [13, 14], and
Chimera [15, 16]. This era is characterized by client-server-based and open hy-
permedia systems.

2.3 OHSWG Era (1997–2003)

The OHSWG era is characterized with its benefit of the efforts performed
to achieve standardization and interoperability. Systems developed at this era
adopted the architecture openness, component-based approach, and the struc-
tural computing philosophy introduced in HOSS [12]. Current systems that
implemented these advances include FOHM [17, 18], Callimachus [19], Con-
struct [20, 21, 22], and Themis [23, 24]. The main common features between these

68 O.I. Eldai et al.

systems are the adoption of the component-based approach (CB-OHS) and struc-
tural computing philosophy and the generalized data model such as in FOHM.

2.4 New Era (2004–)

This era represent the systems that will come out as a result of the active CB-
OHSs research community. We believe that there will be new versions of exiting
systems as well as newly developed systems will appear in the near future. We
think that the main direction of these systems will be more work on structural
computing, openness, and implementation of these systems in new structural
domains.

3 Aspects

The set of the aspects to be considered when designing an OHS are:

– Structure awareness. This refers to the architectural level where the sys-
tem is aware about structures (Interface/Display, middleware, backend, and
operating system level).

– Distribution. This aspect involves system support for different configura-
tions, the support for different hardware and software platforms, and the
allocation of the system itself in one or several locations, and its services
within the environment.

– Architecture openness. This aspect describes the capability of the systems
architectural model to support modularization and scalability.

– Open data abstraction. This addresses the capability of a system to sup-
port and define different/new data types, and facilitate the integration of
applications to the system

– Open structure abstraction. This is the capability of the system to support
different sets of structural abstractions, and structural services and to ex-
tend, update the set of available structure abstractions and structural ser-
vices.

– Open services levels. This refers to the ability of the system to provide dif-
ferent, meaningfully independent levels of services without forcing the user
to subscribe to undesired level of service.

– Interoperability. This is the ability of the OHS components to know each
other, communicate with each other and the ability of the system to com-
municate with the integrated applications, WWW, and other OHSs.

– Maturity. This aspect concerns whether a system design and development
are based on existing standards.

4 Scenario Descriptions and Analysis

In each subsection below, we provide two parts: a scenario description; and, as
analysis. In the scenario description section, we provide a short story to explain

Towards a Generic Building Block for CB-OHSs 69

the needs of users of hypermedia authoring environments. In the analysis section,
we state the goals of the scenario, state the participating characters needs and the
problem, analyze the requirements on developers and the our proposed building
block (BB), and conclude with the solution provided by the building block for
the stated problem.

The characters in this scenario (A, B and C) are working at Elegant Software
Company. They have performed the analysis, design and coding for a stock
control subsystem. Now they want to collaboratively document the subsystem
that they have developed. The scenario has the following characteristics:

– Multiple users (co-editors) are located at different sites.
– Each editor uses a different hypermedia-authoring environment.
– The editors need to share some of the documents.
– There is a need to support both asynchronous as well as synchronous col-

laboration.
– Users are free to use different service levels.

The scenarios describe a sample task (co-editing) between a group of edi-
tors and analyzes the requirements on cooperative open hypermedia systems to
support them.

In the scenarios, author A and author B are working on a group of shared
hyperdocuments that consists of a network of objects and structures (nodes and
links) using the HMSs that they acquire in the initial scenario.

4.1 Scenario 1: Support for Distribution

Scenario Description. A is a software engineer at Elegant Software Company.
He has decided to explore the use of the hypertext to support a documentation
task has been assigned. He installs a free HMS on his group computer (IBM
compatible PC, with Windows OS) and starts creating links to and from the
documentation and code using HMS-A.

When A and B meet to discuss the status of this task, A tells B that he is
using HMS-A to create links/structures. B finds the idea of using a HMS very
interesting and hence, he decides to install and use it on his own laptop (Mac).
A and B would then be able to import the documentation from one machine
to another and exchange other analysis, design, and code documents. When A
attempts to install the HMS on Bs machine he finds that the HMS does not
work properly. A is quite sure that he followed the same steps he used when
installing HMS-A on his own PC. After several unsuccessful attempts he decides
to contact the developer of HMS-A. He writes an e-mail message to the developer
of HMS-A asking for help. He is informed that the system cannot run on the
Macintosh platform.

Scenario Analysis

Goals.

– Support for multiple platforms: Support for system availability to run on
different platforms (hardware and software).

70 O.I. Eldai et al.

– Support for availability on different configurations: The possibility to config-
ure the system to run on LAN, WAN and the WWW.

– Support for standardization: Support of the previous two points means sup-
port for standardization (development of systems that can run on different
platforms), and different configurations (this may be facilitated through de-
velopment of scalable/sizable systems).

Problem statement. It is obvious that the hypermedia system (HMS-A) does
not support different platforms and network configurations as required by the
characters.

Requirements for developers. Developers can deal with these issues by cre-
ating platform independent systems. Many techniques can contribute to the
achievement of this goal, including the implementation language, development
of reusable components and, adoption of standards. In addition, a developer
can choose to develop a single version of the system that is platform inde-
pendent or develop different versions of the system for different platforms and
configurations.

4.2 Scenario 2: Support for Open Data Abstraction

Scenario Description. Author B searched the Web for an alternative HMS. He
finds and installs another hypermedia system that supports the Mac platform.
B starts creating links between his documents and code. He then contacts A and
they decide to meet to exchange documents. During their meeting, they discover
that they are using different hypermedia vocabulary terms and so it is difficult
for them to understand each other. Moreover, they are using different editors
and discover that they cannot copy documents from one system to another due
to the use of different data formats.

Scenario Analysis

Goals. The goals of this scenario are to demonstrate the need of users of different
open hypermedia systems to exchange hyperdocuments and data without consid-
eration for the authoring applications that they use. The second aim is that users
expect to be able to communicate their knowledge with other colleagues using
different systems, and to be able to use different HMSs for creating structures
and links.

Problem statement. Users A and B are unable to exchange ideas and knowledge
about the tasks they have performed because the two hypermedia systems use
different conceptual frameworks and hence lack a shared vocabulary. The char-
acters in the scenario are unaware of the data formats supported by each of the
hypermedia systems, and hence they think they can exchange hyperdocuments.

Towards a Generic Building Block for CB-OHSs 71

Requirements for developers. Developers must create hypermedia systems that
support different data formats, either directly or indirectly. They also have to
use well-known (standard) terms in their systems, so that a user of one system
can more easily use other systems (standardization support).

4.3 Scenario 3: Support for Distribution and Maturity

Scenario Description. A and B decide to look for a solution to the problems
in the first two scenarios. A suggests that they can install HMS-A on their
companys application server; they can then access the system from their offices
or at home. They test the system on the server and it works fine. They try to
access the system from their desktops concurrently and fail. A message to the
developer of HMS-A reveals that the system does not support multiple users and
does not support distributed access across a network.

Scenario Analysis

Goals.

– Support for standardization in OHS design and development: Support for
using standard design methods (CB technology, modules, etc.), and imple-
mentation methods, selection of standard component framework technologies
for communications purposes (RMI, CORBA, TCP/IP, SOAP, etc.)

– Support for extensibility in OHS design and development: Support for devel-
opment of flexible, extensible systems architectures. This includes the ability
to support the introduction of new components to a system and the dele-
tion of existing components while the system is running. It also includes the
introduction of extensible classes/components.

– Support for distribution and sizing/scaling: Support for the execution, reuse,
and distribution of the systems components (As well as the whole system),
services, clients/applications, and users over different configurations includ-
ing single machine, LAN, WAN, and the WWW.

Problem statement. In practice, users may require systems with flexible and
extensible architectures that allow them to either add a new service to a system
or remove/delete an existing service without halting the system. They may need
to modify an existing service or develop a new one using the templates of the
running system. Many systems are developed without this support, however. The
second issue is that many systems were developed to run on a few configurations;
these systems do not allow scale well in WAN settings.

Requirements for developers. Developers must: design systems and services that
can be distributed in many different network configurations; provide systems
that can be upsized and down sized on the fly; supply users with extensible
classes/components; and, support multiple users. They must also support dis-
tribution.

72 O.I. Eldai et al.

4.4 Scenario 4: Support for Architecture Openness

Scenario Description. The developer of HMS-A recommends a new version
of the system recently released. The new version supports a LAN-based config-
uration as well as different users. Now A and B can use the system as desired.
However, they would also like to use the system in a WAN-based configuration
and they would like to use their favorite text editors, which are not currently
supported by HMS-A. They decide to make some extensions to HMS-A so that it
can be used across a WAN and support their favorite text editors. Unfortunately,
they discover that the system is not extensible.

Scenario Analysis

Goals.

– Support for application integration: Support for application integration ei-
ther as a part of the system environment (full integration) or be able to
launch of those application that do not support full integration (partial in-
tegration).

– Support for maturity: Support for maturity through the standardization of
the analysis, design, and code documentation, etc.

Problem statement. In a hypermedia environment, users prefer to keep their
legacy applications and integrate popular editor into the environment instead
of learning how to use a new editor. To satisfy these requirements, develop-
ers have to support the integration of these applications in a straightforward
manner.

Requirements for developers. Developers must design open architectures to sup-
port different levels of application integration, and provide users with some
means (documentation, integration tools, etc.) to perform application integra-
tion (support of maturity).

4.5 Scenario 5: Support for Open Service Levels

Scenario Description. Now all the software development staff at Elegant Soft-
ware Company are using HMS-A. One day, A receives an error message when try-
ing to open a design document. He discovers that another member of the group
was already editing that document. This identifies a need to edit documents syn-
chronously so that users can finish their work on time. They decide to develop a
new collaboration service and integrate it into the system. The collaboration ser-
vice allows two or more authors to edit the same document at the same time. In
addition, they want the service to flexibly allow users to switch from a single user
editing mode to a multi-user collaborative editing mode and back.

Towards a Generic Building Block for CB-OHSs 73

Scenario Analysis

Goals.

– Support for open service levels. Support for open service levels includes the
ability of a service or system to switch from one level of service to another
level without needing to start a new service. Suppose that an author editing a
document in asynchronous mode, and then another authorized author starts
using the service to edit the same document. The service should switch up
to synchronous level so that both authors can co-edit the document without
needing to start a different service. The same functionality is applicable if
two authors are editing the same document simultaneously and one of them
exits the service or decides to edit another document. The other author
should be automatically switched to an asynchronous level.

– Support for component interoperability. Support for component interoper-
ability can facilitate and support the pervious requirement explained in this
scenario, and the possibility of development of only one component to be
shared between many different components. A good example for such compo-
nents could be a communication component, storage component and naming
and allocation component.

– Support for component-based approach: Support for component-based ap-
proach will minimize and ease the efforts needed to modify/add component.

Problem statement. In performing their daily tasks and while using services,
users would prefer to be switched automatically to the level of the service they
need. This requirement forces the need for service interoperability and hence
developers need to develop services in a CB manner with explicit support for
different levels of service.

Requirements for developers. Developers must develop services/systems as com-
ponents that can communicate and understand each other messages, and allow
for multiple service levels (for those service that can be leveled e.g., collaboration,
an taxo-spatial service, gaming service, etc.).

4.6 Scenario 6: Support for Interoperability

Scenario Description. One year later, Elegant Company decides to merge
with Software House Company (SHC) which has many offices distributed over
the world. SHC is already using another HMS (HMS-C). After the merge, A
tries to create a link from his code to the analysis made by team member C,
who is using HMS-C, and discovers that it is not possible, because the two
systems use different communication protocols and can not exchange messages.
The department head decides to extend HMS-C to be able to communicate with
HMS-A through the addition of a new module to HMS-C.

74 O.I. Eldai et al.

Scenario Analysis

Goals.

– Support for components and systems interoperability: The support for sys-
tems interoperability includes the ability of the different hypermedia sys-
tems to communicate and understand each other messages. This can be
either between whole systems or between services of the different systems.
Achievement of this requirement will help users to exchange and share hy-
perdocuments as well as support collaboration.

– Support of different communication protocols: Support for different com-
munications protocols includes support of well-known existing components
framework technologies such as CORBA IIOP, Java RMI, SOAP and support
of TCP/IP. Systems that comply with communication protocols standard-
ization will support some of the famous common protocols, and accordingly,
they will be able to communicate with each other.

Problem statement. Users using different hypermedia systems environments may
need to interact with objects and documents maintained by other hypermedia
systems. The kind of navigation needed may iclude browsing, and storage refer-
ences to remote objects or documents. Thus, different hypermedia environments
should support these interoperability requirements. The interoperability may be
between services belonging to the same environment or between different envi-
ronments.

Requirements for developers. Developers must design systems that sup-
port both components and systems interoperability (horizontal and vertical
interoperability).

4.7 Scenario 7: Support for Structure Awareness

Scenario Description. While writing documentation, A and B try to make
links to the arrows and other symbols representing the systems data flow dia-
grams and architecture diagrams. However, they find that HMS-A and HMS-C
support linking only to the whole diagram and not parts within it. Hence, they
decide to integrate an application that supports the creation and storage of the
design and analysis objects (arrows, triangles, rectangles, etc.) as independent
objects that can be treated separately and which also can be added to groups
(composites).

Scenario Analysis

Goals.

– Support for structure awareness.
– Support of structures at different levels: including application/user interface,

middleware, backend, and operating system.
– Support for creation of structures between displayed objects.
– Support for creation of relations and links between displayed objects.

Towards a Generic Building Block for CB-OHSs 75

Problem statement. A client of hypermedia environments (applications,
browsers, users) needs to be able to access and display retrieved objects. If this
is not possible, it may just start a browser or hypermedia system that maintains
the required objects on the users workstation. Moreover, clients may require
creating relations and links between the displayed/retrieved objects and hence
storing the references to these structures either remotely or locally.

Requirements for developers. Developers must design a structure aware storage
service.

4.8 Scenario 8: Support for Open Structure Abstraction

Scenario Description. At a department meeting, As department head sug-
gests that a web page be created for the department; it can be used to house
As and Bs documentation on-line. When the Web group starts developing the
site they discover that taxonomic structures are the best way to structure the
documentation and the analysis/design documents. Unfortunately, they discover
that their OHSs do not support taxonomic structures.

Scenario Analysis

Goals.

– Support for open structure Abstraction: Support for open structure abstrac-
tion includes the support for different sets of structural abstractions, struc-
tural services and the ability to extend and update the set of available struc-
ture abstractions and structural services. The open structural abstraction
level of a system is directly related to the number and types of supported
structure abstraction in the specific system, as well as common structure ab-
stractions (node, link, anchor, taxon, and composite) and structural services
(navigational, spatial, taxonomical, argumentation).

– Support for creation of structures (relation, link) between objects: The system
structural model support for an open set of structure types (link, anchor,
node, taxon, support positions, and evidence structure abstraction).

Problem statement. A client of hypermedia environments (applications,
browsers, users) needs to be able to navigate and organize structures in different
ways. This requirement can be supported by the ability of the environment to
allow creation and navigation of existing/displayed objects. Another factor is the
structural data model support for an open set of structural abstractions. Many
of the existing hypermedia system environments support only a limited number
of structural abstractions and structural services.

Requirements for developers. Developers must design an open structural model
to support an open set of structural abstractions and structural services, and
design systems that support the creation of structural relations and link between
objects.

76 O.I. Eldai et al.

5 Survey Results

We have surveyed some of the prominent OHSs including: DHM; Microcosm;
Chimera; HOSS; HyperDisco; and, Construct. We designed an analysis frame-
work to carry out the survey. The analysis framework consists of two axes (X, and
Y, or horizontal and vertical). The Y-axis represents the levels of achievements
(weights, i.e., low medium and high), while the X-axis represents the complexity
and maturity aspects to be rated or weighted. This section introduces the results
that we have drawn from the survey using the analysis framework.

We have found six important results from the survey. First, none of the sys-
tems reviewed achieve a high level in all aspects. Some systems are better than
others in their overall achievement. Second, all systems provide low-level achieve-
ment in the open services levels aspect. Third, all systems provide medium level
of achievement in distribution, architecture openness, interoperability and ma-
turity aspects. These systems vary in the set of sub-aspects that they satisfy to
gain the medium level of achievements. Fourth, all systems provide a high level of
achievement in the open data abstraction aspect. Fifth, for other aspects (struc-
ture awareness and open structure abstraction) the reviewed systems provide
different levels of achievements ranging from low to high, which is an expected
result. And finally, in six aspects out of the overall eight aspects in the analysis
framework, all the surveyed systems share the same levels of achievements.

From the previous results we can observe that although many of the surveyed
OHSs have preformed well in some of aspects, none of them has addressed all
aspects.

6 A Generic Building Block for CB-OHSs

To help solve this problem we have proposed a building block called BB that
addresses all the aspects. The level of achievements of systems built upon this BB
will be acceptable in all OHSs aspects. The proposed BB takes into consideration
a single component of the OHS environment (services layer component) and then
it generalizes this component to be applicable for other components/services as
shown in Fig. 1.

Fig. 2 shows the BB for Component Based Open Hypermedia Systems
(BB/CB-OHSs). This BB represents only a single component/service of a sys-
tem/environment, meaning we will have multiple views of the BB according
to the number of services we support. The BB consists of the following main
components:
– Service component: This part is divided into two subparts: each service in

BB is comprised of two main parts. The first part os the common part, which
includes common components that all services contain, such as the capability
to communicate with the naming and location services, the internal message
format for the whole BB. The second part is the service unique-core part,
which concerns the specific operations of that service (service specific features
and tasks).

Towards a Generic Building Block for CB-OHSs 77

Fig. 1. The relationship between the proposed building block and an OHS environment

Fig. 2. Proposed building block Block for Open Hypermedia Systems (BB/CB-OHSs)

78 O.I. Eldai et al.

– Pluggable Communication Module (PCM): The pluggable communication
module is the part (PCM-class), which facilitates the communication be-
tween the BB and external BB (such as a service in another BB or system).

– Internal Message Module (IMM): This part keeps and manages incoming
and out going messages.

6.1 BB Advantages

We believe that our BB has several advantages. It improves most of the OHSs
aspects especially distribution, interoperability, maturity. This is because of the
relations between these aspects. For example, the BB support for component
based technology contributes to the improvement of all aspects. The BB also
supports an open set of communications protocols, through the provision of the
PCM, which is extensible and easier to add to. This contributes to the distri-
bution, architecture openness, interoperability, well definedness and open data
abstraction aspects. The BB supports reuse, flexibility, and openness since it
uses components that can be extended, add to/update or delete and hence it
supports rapid prototyping. We believe that the BB is general and can support
different application domains and requirements (since the implementation de-
tails is left to the choice of the developer). Finally, the BB Supports different
architectures (can be implemented as peer-to-peer or client-server as desired).

6.2 BB Improvements on Aspects

The distribution aspect is improved because the BB is component-based; this
will help in distribution of all/parts of the BB. Moreover the BB supports an
open set of communication protocols; this will facilitate communication between
distributed services, applications, and environments/systems. Finally, the imple-
mentation language is platform independent. It can run on different operating
systems, machines, and network topologies.

The proposed BB improves the interoperability aspect because it is
component-based and supports open set of communication protocols (facilitates
and achieves all interoperability types).

The BB support of open set of communication protocols, component-based
technology, object naming scheme, reuse, use of Java as implementation lan-
guage (which is popular, object-oriented, platform independent) and provision
of services that are general enough to support different type of services and terms
will improve the well definedness aspect.

The architecture openness aspect will be improved through the support of
component-based technology and extensibility. Hence, easier insertion/deletion
of components and the introduction of a new service may only require the ex-
tension of one or more of the existing extensible components (open and flexible
architecture), reducing implementation time and effort.

Regarding the improvement of the open service levels, the BB can be used as
a testbed for experimenting the provision of open services levels. Since services
can be added to the system as components, these services can be decomposed
into smaller components as desired.

Towards a Generic Building Block for CB-OHSs 79

Since the BB supports an open set of communication protocols, this makes
easier the communication with other systems, WWW, and applications that
support different data formats. Also, the BB support of the reuse facility can
help in fast prototyping.

The object-oriented implementation language and support of the object no-
tion will partially improve the achievement in open structure abstraction and
structure awareness aspects, since the structure can be implemented and treated
as objects.

No service specific model is enforced (architecture or data model). Each BB
can have a different model. Additionally, services (SCUMs) within the same
BB can have different models, but the problem of understanding each other
model will arise. Information about different services models can be placed at
the naming service to overcome this problem.

7 Reusability

We refer to reusability as the ability to use all/part of an existing code in the
development of a new service or component. As the amount the of reused code
increases the time and efforts needed to add a new component is decreased and
a fast integration and development is achieved [5].

The PCM can be reused either as a whole module or some units of the module
can be used as desired. Specification and extensible classes the PCM can be used
or modified to implement a new communication protocol. Specifications and
extensible classes of SCUM can be used in developing new service/component
in addition to the main communication methods (send message, get message,
and contact the naming and location service). A whole SCUM can be reused if
the service is needed to be replicated in different systems or hosts provided that
they all use the same model.

The interface between the SCUMs and the PCM is also reusable. Addition-
ally, the methods that contact the naming and location service to register a new
service, to check for a service host and communication protocols when classifying
and cashing messages (into internal and external) or registering a service are all
reusable.

None of the available systems introduce an implemented PCM that directly
supports a set communication protocols (RMI, TCP/IP, SOAP) for communi-
cation with other environments/systems. Our model uses dynamic location of
services and hosts. Services can change their locations, hosts or communication
protocols (ComType) at any time after sending a message, without waiting for
the reply. Services can also ask to forward the answer to another service.

The BB can be used to develop services and systems as well as applications.
Existing services can still use any newly introduced communication protocol.
Restrictions are provided to make sure that the developed service or communi-
cation protocol complies with the BB. Incorporated naming and location services
support distribution. The BB also supports heterogeneity of programming lan-
guages.

80 O.I. Eldai et al.

The proposed BB is applicable to OHSs, and unique because to date no one
has proposed such an environment. Therefore, it can improve achievements of
the OHSs developed based on this BB.

8 Relations Between Aspects

We think that there are tight relations between the interoperability, architecture
openness, distribution, and system well defined aspects achievements. Any im-
provement/raise of achievement in one of the above aspects will affect directly
or indirectly the achievements levels in others, here we provide some examples:
Example 1. Improvement of the interoperability aspect achievement between the
system components and the system with the integrated applications, WWW, and
other systems will increase the system distribution aspect. In order to improve
the interoperability, we may use different communication protocols or one of
the components framework technologies. This will improve system well defined,
architecture openness and distribution as well.
Example 2. To improve the well defined, we may use the proposed OHSWG
architecture; which is layered architecture. This may improve the architecture
openness aspect achievement, as well as the interoperability between system
components.
Example 3. To improve distribution, naming and location services may be in-
troduced. This may improve both the well defined and interoperability of the
system.

Based on the way the proposed BB addresses the individual aspects (direct
and indirect) we have divided them into two categories, namely:

Directly addressed aspects. This group of aspects represents all parts of the BB
except those at the unique core part. The set is directly addressed and improved
by the BB. This category includes the following set of aspects: distribution; inter-
operability; well-definedness; architecture openness; and, open data abstraction.

Indirectly addressed aspects. This group of aspects represents the unique core
part of each service. This set is addressed and improved indirectly by the BB.
In order to provide an argument for this part, the BB can be used as testbed
to develop some services to achieve this goal. We think that the achievement or
improve in this aspects mainly depends on developers choice during implemen-
tation of the BB. This indicates that the BB is general (an advantage of the BB)
due to this feature of the BB (generality) the choice is left for the developer to
decide according to his needs and preference. This category includes the follow-
ing set of aspects: open service levels; structure awareness; and, open structure
abstraction.

The structure awareness and open structure abstractions are placed here
because their address cannot be direct unless the developer of the service is
intending to have these aspects in his system. For example, a system based on
our BB may have different types of structure types that may or may not be
first-class depending on the implementation and the choice of the developer.

Towards a Generic Building Block for CB-OHSs 81

9 Related Work

9.1 Structural Computing and Component-Based Technology

Component-based technology addresses the issue of dividing the system into a set
of components. This affects system scalability and facilitates development and in-
teraction between components. While, structural computing [25] deals with the
system from a point of a set of structures and relations between these structures.
We believe that the proposed BB is a hybrid between these two approaches. It is
structure aware, supports an open set of structures at the same time it provides a
generic component that can be used to develop all other components needed in a
system.

9.2 Recent Trends in Design of CB-OHSs

Component-based approach. The philosophy of this approach is to support de-
composition of the system architecture into components. This increases the sys-
tem modularity and hence makes it easier to add a new service and modify or
delete an existing service at run-time, hence reducing maintenance and develop-
ment effort and time [20, 21, 22].

Provision of multiple open services. This approach divides the services into
smaller functionally independent set of services, hence allowing the user to choose
the required level. It also improves scalability. Examples of systems that imple-
ment this approach are HOSS, Construct and Callimachus system [22].

Structural computing. Structural computing is a computation philosophy that
separates data and structures; it also allows the definition of behaviors sep-
arately [12]. This philosophy defines computations over the general structure
element named as behaviors.

Standardization. The Open Hypermedia Systems Working Group has made many
efforts to support standardization in the community practice. The result of these
efforts are: the standard three layer reference architecture, the Open Hyperme-
dia Protocol (OHP), as well as many attempts to propose frameworks for ap-
plication integration, versioning, collaboration, and integration with the WWW
by different OHSWG members. Standardization encourages adoption, reuse and
interoperability.

Provision of development tools to support rapid prototyping. As a recent trend
in OHS development, system designers and developers tend to provide some
tools and services to help develop new services and systems (rapid prototyping),
hence lowering the entry-barriers, reducing the effort, time, and knowledge (pro-
gramming skills, distribution and synchronization issues) required to develop a
service/system. This approach was first seen in the Hyperform and HOSS envi-
ronments [12, 20, 21].

82 O.I. Eldai et al.

Integration of different hypermedia domains. A recent trend in structural com-
puting and OHS is the integration of hypermedia domains. The aim of this
integration is to allow users to combine and use structural services for dif-
ferent hypermedia domains. Examples for this approach include Fundamental
Open Hypermedia Model (FOHM) [17, 18]. Examples of projects or systems im-
plemented this approach include EXTERNAL and the XCHIPS system [26],
FOHM [17, 18], and the Auld Linky [27].

10 Conclusions and Future Work

In this paper, we have presented the results drawn from our previous survey of
some prominent OHSs, including the aspects considered in carrying the survey.
We have found that none of the surveyed systems addressed all the aspects. We
therefore proposed a BB that is general enough and flexible to help in addressing
all aspects. Moreover, the proposed BB can be used as a testbed/design space
to experiment/enhance the achievement of the developed system in all aspects.

We believe that the proposed BB can potentially improve the performance
of the CB-OHSs in all aspects discussed above, and therefore advance the state
of art in this research area. The proposed solutions in this paper dealt with
the problem from the conceptual view through the survey, and the BB into
application/implementation of the framework and the BB.

Currently the proposed BB is under active development (using Java lan-
guage). Specifically, we are working on the development of the event queue and
the PCM. The entire BB (the first version) is expected to be ready in the near
future.

In our future work, we are planning to populate the BB through the devel-
opment of some services to provide evidence for the improvement that the BB
provides for all aspects (especially, the set of indirectly addressed aspects). We
think that the open service levels aspect needs more attention of the research
community to figure out the possible meaningful levels of services in today OHSs
services.

Although we have given a set of aspects in the analysis framework, these
aspects cant be seen as unrelated to each other. An improvement in one aspect
affects some others aspects as well (as discussed above).

We believe that providing much effort in designing the architecture of OHSs
will highly contribute to the elimination of many issues faced by currently avail-
able systems. In fact, this conclusion agrees with the standardization efforts of
the OHSWG. Our approach is more robust because it provides a whole BB
that can be implemented in many different ways according to the choice of the
developers.

In terms of Engelbart’s A-B-C work level description, we are trying to help
systems designers and developers so we are working in B-level. Also the use of
the developed services will affect users indirectly (level B, and C).

Towards a Generic Building Block for CB-OHSs 83

References

1. Bush, V.: As we may think. Atlantic Monthly 176 (1945) 101–108
2. Akscyn, R., McCracken, D.: KMS: a distributed hypermedia system for managing

knowledge in organizations. Communications of the ACM 31 (1988) 820–835
3. Halasz, F.G.: Reflections on NoteCards: Seven issues for the next generation of

hypermedia systems. Communications of the ACM 31 (1988) 836–852
4. Yankelovich, N., Haan, B., Meyrowitz, N., Drucker, S.: Intermedia: the concept

and the construction of a seamless information environment. IEEE Computer 21
(1988) 81–96

5. Nürnberg, P.J., Leggett, J.J., Schneider, E.R., Schnase, J.L.: Hypermedia operating
systems: a new paradigm for computing. In: Proceedings of the Seventh ACM
Conference on Hypertext (HT 96), Washington, DC, USA, ACM Press, New York,
NY, USA (1996)

6. Grønbæk, K., Trigg, R.H.: Design issues for a Dexter-based hypermedia system. In:
Proceedings of the European Conference on Hypertext 1992 (ECHT ’92), Milano,
Italy, ACM Press, New York, NY, USA (1992) 191–200

7. Grønbæk, K., Hem, J.A., Madsen, O.L., Sloth, L.: Designing Dexter-based co-
operative hypermedia systems. In: Proceedings of the Fifth ACM Conference on
Hypertext ’93 Conference, Seattle, WA, USA, ACM Press, New York, NY, USA
(1993) 25–38

8. Halasz, F.G., Schwartz, M.: The Dexter hypertext reference model. Communica-
tions of the ACM 37 (1994) 30–39

9. Grønbæk, K., Trigg, R.H.: Toward a Dexter-based model for open hypermedia:
unifying embedded references and link objects. In: Proceedings of the the Seventh
ACM Conference on Hypertext, Washington, DC, USA, ACM Press, New York,
NY, USA (1996) 149–160

10. Grønbæk, K., Bouvin, N.O., Sloth, L.: Designing Dexter-based hypermedia ser-
vices for the World Wide Web. In: Proceedings of the Eighth ACM Conference
on Hypertext, Southampton, United Kingdom, ACM Press, New York, NY, USA
(1997) 146–156

11. Davis, H., Hall, W., Heath, I., Hill, G., Wilkins, R.: Towards an integrated informa-
tion environment with open hypermedia systems. In: Proceedings of the European
Conference on Hypertext 1992, Milano, Italy (1992) 181–190

12. Nürnberg, P.J.: HOSS: an environment to support structural computing. PhD
thesis, Texas A&M University, College Station, TX, USA (1997)

13. Wiil, U.K., Leggett, J.J.: The hyperdisco approach to open hypermedia systems.
In: Proceedings of the the Seventh ACM Conference on Hypertext, Washington,
DC, USA, ACM Press, New York, NY, USA (1996) 140–148

14. Wiil, U.K.: Evaluating hyperdisco as an infrastructure for digital libraries. In: Pro-
ceedings of the 1998 ACM Symposium on Applied Computing, Atlanta, Georgia,
USA, ACM Press, New York, NY, USA (1998) 491–497

15. Anderson, K.M.: Supporting industrial hyperwebs: lessons in scalability. In: Pro-
ceedings of the Twenty-First International Conference on Software Engineering,
Los Angeles, CA, USA, IEEE Computer Society Press, Los Alamitos, CA, USA
(1999) 573–582

16. Anderson, K.M.: The extensibility mechanisms of the Chimera open hypermedia
system. Journal of Network and Computer Applications 24 (2001) 75–86

84 O.I. Eldai et al.

Proceedings of the Eleventh ACM on Hypertext and Hypermedia, San Anontio,
TX, USA, ACM Press, New York, NY, USA (2000) 93–102

18. Ridgway, N., DeRoure, D.: RTSP+FOHM: applying open hypermedia and tem-
poral linking to audio streams. In: Revised Papers from the Third International
Workshops OHS-7, SC-3, and AH-3 on Hypermedia: Openness, Structural Aware-
ness, and Adaptivity, University of Aarhus, Århus, Denmark, Springer-Verlag, Hei-
delberg, Germany (2001) 71–81

19. Tzagarakis, M., Vaitis, M., Papadopoulous, A., Christodoulakis, D.: The Calli-
machus approach to distributed hypermedia. In: Proceedings of the Tenth ACM
Conference on Hypertext and Hypermedia: Returning to our Diverse Roots, Darm-
stadt, Germany, ACM Press, New York, NY, USA (1991) 47–48

20. Wiil, U.K., Hicks, D.L.: Tools and services for knowledge discovery, management
and structuring in digital libraries. In: Proceedings of the Eighth ISPE Inter-
national Conference on Concurrent Engineering: Research and Applications (CE
2001), Anaheim, CA, USA (2001) 580–589

21. Wiil, U.K.: Development tools in component-based structural computing environ-
ments. In: Proceedings of the Seventh Workshop on Open Hypermedia Systems.
Volume 2266 of Lecture Notes in Computer Science., Århus, Denmark, Springer-
Verlag, Heidelberg, Germany (2001) 82–93

22. Wiil, U.K., Hicks, D.L., Nürnberg, P.J.: Multiple open services: a new approach
to service provision in open hypermedia systems. In: Proceedings of the Twelfth
ACM Conference on Hypertext (Hypertext 2001), Århus, Denmark, ACM Press,
New York, NY, USA (2001) 83–92

23. Anderson, K.M., Sherba, S.A., van Lepthien, W.: Structure and behavior awareness
in Themis. In: Proceedings of the Fourteenth ACM Conference on Hypertext and
Hypermedia, Nottingham, United Kingdom, ACM Press, New York, NY, USA
(2003) 138–147

24. Anderson, K.M., Sherba, S.A., van Lepthien, W.: Structural templates and trans-
formations: the Themis structural computing environment. Journal of Network
and Computer Applications 26 (2003) 47–71

25. Wiil, U.K., Hicks, D.L.: Providing structural computing services on the World
Wide Web. In: Revised Papers from the Third International Workshops OHS-7,
SC-3, and AH-3 on Hypermedia: Openness, Structural Awareness, and Adaptiv-
ity, University of Aarhus, Århus, Denmark, Springer-Verlag, Heidelberg, Germany
(2001) 160–171

26. Wang, W.: Visualizing and interacting with hypermedia-based process-centric en-
terprise models. Journal of Network and Computer Applications 26 (2003) 73–93

27. Millard, D.E.: Discussions at the data border: from generalized hypertext to struc-
tural computing. Journal of Network and Computer Applications 26 (2003) 95–114

17. Millard, D.E., Moreau, L., Davis, H.C., Reich, S.: FOHM: a fundamental open
hypertext model for investigating interoperability between hypertext domains. In:

Applying Information Visualisation Techniques
to Spatial Hypertext Tools

Kirstin Lyon and Peter J. Nürnberg

Department of Computer Science, Aalborg University Esbjerg,
Niels Bohrs Vej 8, DK-6700 Esbjerg, Denmark

{kirstin, pnuern}@cs.aue.auc.dk

Abstract. Organising information is an important knowledge work ac-
tivity that is frequently used in the work place and at home. Even though
this task is an every day activity, it is nontrivial. Some tools exist that
take advantage of our spatial and visual intelligence, but have some diffi-
culties with creating a satisfying visualisation for the information. Visu-
alisations built by users may not show the information in the most useful
way, so important facts may not emerge in time, or at all. Information vi-
sualisation suggests possible methods by which to visualise various types
of information. However, it focuses on existing and explicit structures.
This paper suggests combining spatial hypertext with information visu-
alisation techniques to allow users to organise their information more
effectively.

1 Introduction

Structuring information is an important task used in many analysis situations.
It is a difficult and time-consuming task that can change over time. The pro-
cess happens in several stages. Firstly, information is collected. Secondly, it is
organised in some way (e.g., alphabetically, chronologically, by topic etc.). This
process then continues until a satisfactory result is achieved. In some cases, it
can be reported or presented afterwards [1].

The growth of the Internet as a public information resource means that it
is easier to access and gather information quickly. An advantage of this is the
ability to keep a digital copy of that information for future reference. This means
that users have potentially large personal libraries of information on their com-
puters. This amount of information is difficult to organise within a hierarchical
file structure (e.g., Windows file system). Some tools exist that allow users to
organise their information informally [2]. However, difficulties can occur when
trying to navigate that information.

Information visualisation tools exist that allow users to navigate around large
information spaces. However, most visualisation tools are designed to work with
existing and explicit structures. Existing tools focus mainly on navigation of
information, not on interaction with it.

The focus of our work is, instead, on implicit and emergent structures and
interaction of information. By looking at the techniques already available in

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 85–93, 2004.
c© Springer-Verlag Berlin Heidelberg 2005

86 K. Lyon and P.J. Nürnberg

traditional information visualisation tools, it should be possible to transfer some
of those techniques into spatial hypertext tools. Both have a similar problem
i.e. visualising large amounts of disparate information is difficult, so a similar
solution should exist for both. Different categories of information exist [3] and
can be paired with various visualisation techniques to produce the most effective
result. If the information to be organised manually fits one of those defined
categories, techniques from that visualisation method could be used for spatial
hypertext tools.

The remainder of this paper is organised as follows: Sect. 2 describes and
compares spatial hypertext and information visualisation tools. Section 3 de-
scribes the tasks that information visualisation tools are expected to do, as well
as the types of information available and appropriate visualisation methods. It
also outlines a possible tool. Section 4 discusses some existing spatial hypertext
and information visualisation tools. Section 5 discusses potential furture work.
Section 6 offers some conclusions.

2 Spatial Hypertext Versus Information Visualisation

Some similarities exist between spatial hypertext and information visualisation.
Information to be organised is similar. One difference is in if a user of computer
(or both) organise it.

Spatial Hypertext. Hypertext research looks at how to present and represent
material electronically that is too complex to represent on paper [4]. Struc-
tures discussed in the hypertext domain include: associative (navigational); tax-
onomic; and, spatial. Associative structure links individual documents together.
Taxonomic structure categorises information and represents them as a hierar-
chy. Spatial structure allows users to organise with visual attributes, such as
proximity, colour, shape and size.

When considering how users interact with paper, it can be seen that users
take advantage of the space that surrounds them. Observations in offices [5]
describe how users structure their paper. The ease/difficulty of this is dependent
on several factors, including the amount to be organised and type of information
to be organised. The use of an unstructured “pile”, loosely gathered collection
of paper, is important to users. Other studies found that users were unable
to remember file names precisely, but were given clues from the objects that
surrounded them (e.g., a filing cabinet holds archives of related information [6].)
This kind of spatial organisation was also observed when using Windows and
Macintosh filing systems [6].

Spatial hypertext tools work effectively with information that is organised
implicitly. As no rules are defined by users beforehand, users organise to suit
their own needs.

A limitation of spatial structures is as the amount of information increases,
it becomes more difficult to see both detail and an overview at the same time.

Applying Information Visualisation Techniques to Spatial Hypertext Tools 87

Possible solutions to this include, introducing multimodal cues [7], increasing di-
mensions [8] and incorporating information visualisation techniques into spatial
hypertext tool. This paper focuses on the latter option.

Information Visualisation. When the amount of information becomes large
enough in users computers, it becomes increasingly difficult to navigate around
information, to see the details, as well as an overview. Information visualisation
techniques takes advantage of users’ perceptual characteristics to adapt informa-
tion into a graphical representation. In these tools, as screen size is limited, each
pixel must be taken advantage of. Various tools and techniques exist allowing
users to look at information, in order to see patterns emerge.

Visualisation techniques can be used for different occasions [9]. This is sum-
marised in Table 1.

Comparison. Information visualisation tools concentrate on automatic organi-
sation. They are usually completed mostly by a computer. Rules are set by users
explaining how the information is to be organised beforehand. Difficulties occur
when objects belong in more than one place. However, as it is relatively fast to
change the organisation, these tend to be short-lived and created “on-the-fly”.

Spatial hypertext tools concentrate on manual organisation. This is usually
undertaken by users. Knowledge of a given topic develops over time and a better
understanding of a given problem develops over time. Users are often unable to
fully explain their choices, or why a document is more related to one folder than
another. This kind of organisation tends to be long-lived; that is, it has taken
time to organise, so there is more reluctance to throw it away. More emphasis is
placed on remembering connections instead of defining connections mechanically.

Both information visualisation and spatial hypertext tools takes advantage
of users’ perpetual abilities to scan, recognise, and recall images rapidly with

Table 1. Levels at which visualisation can be used

Contents Primary Use

Infosphere Information outside the Place to find information
users’ environment. needed for work.

Information Information with which Place to hold work in progress.
workspace the user is interacting Used for reducing cost of work,

as part of some activity. reminding user of work materials.

Visual knowledge A data set. Substrate into which data is
tools poured and/or tool for manipulating

it. Used for pattern detection,
knowledge crystallisation.

Visual objects One of more data sets Packaging of data (data often known
packaged for convenience. in advance). Used to enhance objects

of interaction.

88 K. Lyon and P.J. Nürnberg

both moving work from the cognitive to the visual perceptual systems. Both
tools may have similar information to organise, with similar outcomes desired.
Therefore, it should be possible to transfer some techniques from information
visualisation to spatial hypertext.

3 Adapting Spatial Hypertext Tools

Before creating a mixed spatial hypertext/information visualisation tool, it is
necessary to understand what tasks this tool should be able to perform and
what kind of visualisation technique to use. Section 3.1 describes the tasks that
all visualisation tools are expected to perform. Section 3.2 describes the types of
information that are available. Section 3.3 describes various types of visualisation
techniques. Section 3.4 describes a possible tool that combines spatial hypertext
elements with the relevant parts of information visualisation. This includes what
visualisation to use.

3.1 Tasks Supported

An important part of most information visualisation tools is the principle
“Overview first, zoom and filter, details on demand” [3]. When designing a
tool that supports information visualisation, the following tasks should be sup-
ported [3]:

– Overview. Gain an overview of the entire collection. Strategies include:
fisheye; context plus focus; content and view; etc.

– Zoom. Zoom in on items of interest. Users typically are interested in a part
of a collection. Strategies include: smooth zooming ...

– Filter. Filter out uninteresting items. Dynamic queries applied to the items
in the collection. Strategies include: use of sliders; buttons and other control
widgets combined with rapid display update.

– Details on demand. Select an item or group of items and obtain details
when needed. The usual approach is to simply click on an item to get a
pop-up window with values of each of the attributes.

– Relate. View relationships between items.
– History. Keep a history of actions to support undo, redo and progressive

refinement.
– Extract. Search for particular subsets of items. Ability to save searched for

information to a file.

3.2 Types of Information

Information can be divided into several categories depending on its attributes.
The category it belongs to indicates possible visualisation techniques that best
suit it [3]. Some of the information types include:

Applying Information Visualisation Techniques to Spatial Hypertext Tools 89

– 1-dimensional. These are linear data types (e.g., alphabetical lists of names
organised sequentially.)

– 2-dimensional. This is also known as spatial (e.g., planar or map data
including floorplans, newspaper layouts, etc.)

– 3-dimensional. real world objects such as molecules, the human body, and
buildings have items with volume and some potentially complex relationship
with other items. e.g. 3D computer graphics and computer-assisted design
are large topics, but information visualisation efforts in three dimensions are
still novel.

– Temporal. The difference between 1D and temporal is that temporal data
have a start and finish time and that items may overlap.

– Multidimensional. Metadata attributes such as type, size author, modi-
fication date, etc. Items with n attributes become points in n-dimensional
space. Most relational and statistical databases are conveniently manipu-
lated as multi-dimensional data in which items with n attributes become
points in a n dimensional space. The interface may be 2D scattergrams with
additional dimensions controlled by a slider.

– Tree. Any kind of tree structure (e.g., file systems on computers, library
classification schemes, etc.)

– Networks. Graphs (e.g., hypermedia node-link graphs, webs, etc.)

3.3 Visualisation Techniques

Each type of information responds better to different types of visualisations.
Some are more appropriate than others.

– 1-dimensional. Visualisation methods include using bifocal displays that
provide detailed information in the focus area and less information in the
surrounding context area.

– 2-dimensional. Methods include multiple-layer approach, with each layer
being 2D.

– 3-dimensional. Techniques such as overviews, landmarks, perspective,
stereo display, transparency and colour coding.

– Temporal. Similar to 1D, includes perspective wall and lifelines
– Multidimensional. Represented with scattergrams with each additional

dimension controlled by a slider.
– Tree. Several techniques exist as this is a frequent storage system (e.g., file

folder system in desktop.)
– Networks some tree visualisations, graph displays.

3.4 Possible Tool

Tasks. At present some spatial hypertext tools support overview, zoom, relate,
redo and organise. However filter and extract are not implemented in some tools.

90 K. Lyon and P.J. Nürnberg

Types of information. Information being organised in a spatial hypertext
tool may fall into any of the described categories. The kind of the information
to organise is dependent on the user, and is always unknown to the tool. Spatial
hypertext tools should support all knowledge work users.

However, in this case the organisation (structure) of the workspace is in some
ways more important than the data itself. A map, which is an example of a 2D
information type, can be represented as a node that may or may not be connected
to other maps. For example, a website may contain the maps of each country
in Europe. Each map shows its information in a 2D way. Each map may have
a relation to other maps, for example, what are the neighbouring countries?
This kind of information is an example of a network. Therefore, even though the
information may fall into any category, when it is introduced into the spatial
hypertext application, it is changed to being of type network. Therefore, only
network visualisation techniques will be discussed.

Visualisation techniques. Networks may be visualised in various ways. Some
of those techniques are as follow;

– Using hierarchical visualisation techniques. One method is to reduce
the network(graph) into a tree and then use one of the many hierarchical
visualisation methods, e.g.
• Classic tree drawings.
• Tree browsers.
• Tree maps.
• Radial approaches.
• Cone trees.
• Landscapes.
• Hyperbolic browsers.
• etc.

– Layered methods. Layered methods are used for drawing directed graphs,
which are graphs having general flow or direction.

– Force-directed placement. These methods draw on physical analogies and
are applicable to general graphs, without any prior knowledge of structural
properties.

– Energy-based placement. A net force indicates which direction to move
an object in order to reduce the forces acting upon it. This is equivalent to
minimising an implicit internal energy model of the system. These techniques
attempt to minimise this residual energy directly.

– Semantic zooming. Semantic networks are networks of associations be-
tween concepts. Semantic networks are often too large to visualise all at
once in a single visualisation. Semantic zooming techniques attempt to man-
age this complexity by visualisation only a small part of the network at any
one time, but providing for fluid motion between related concepts.

Applying Information Visualisation Techniques to Spatial Hypertext Tools 91

4 Related Work

The following tools are used with automatically created information organisa-
tions, such as the Internet or already arranged hierarchical file systems. They
are examples of how to visualise networks.

4.1 Caliph and Emir

Caliph & Emir are MPEG-7 base prototypes for digital photo and image anno-
tation and retrieval supporting graph like annotation and content based image
retrieval [10].

Caliph supports the creation of new metadata as well as reading the exist-
ing information that already exists in digital photographs. Semantic information
about the image is presented as a directed graph, where the nodes reflect seman-
tic objects, locations, agents, states, times or concepts and the edges define the
relations between these semantic entities. To enhance retrieval efficiency content-
based metadata is extracted and new instances of the image are created for faster
visualisation, like thumbnails. The MPEG-7 description consists of the following
parts: metadata description, creation information, media information, textual
annotation, semantics, visual descriptors.

Emir is an experimental metadata based image retrieval tool that supports
retrieval in file system based photo repositories created with Caliph. Different
types of retrieval mechanisms are supported, such as content based image re-
trieval, and searching through XPath statements, etc.

4.2 Infosky

InfoSky is a system enabling users to explore large, hierarchically structured
document collections [11]. Similar to a real-world telescope, InfoSky uses a pla-
nar graphical representation with variable magnification. Documents of simi-
lar content are placed close to each other and are visualised as stars, forming
clusters with distinct shapes. Textual labels are displayed dynamically during
navigation, adjusting to the visualisation content. Navigation is animated and
provides a seamless zooming transition between summary and detail view. Users
can map metadata such as document size or age to attributes of the visualisation
such as colour and luminance. Queries can be made and matching documents or
collections are highlighted.

4.3 IsaViz

IsaViz is a visual environment for browsing and authoring Resource Description
Framework(RDF) models represented as directed graphs [12]. It features a 2.5D
user interface allowing smooth zooming and navigation in the graph and the
creation and editing of graphs by drawing ellipses, boxes and arcs.

92 K. Lyon and P.J. Nürnberg

5 Future Work

At present we are working on a bi-modal (audio and visual) spatial hypertext
tool. We aim to take advantage of other abilities that users have (e.g., audio
memory) in order to reduce visual overload. The project will increase and develop
the number of audio cues.

This paper focuses on combining relevant elements from information visual-
isation and spatial hypertext research. It identifies the similarities between the
two areas, and what may be transferred. Once it is known what elements can be
used, the next task is, using multimedia principles, to combine the information
visualisation/spatial hypertext principles with multimodal techniques in order
to create an effective multimodal spatial hypertext tool. A prototype will then
be designed, implemented and evaluated.

6 Conclusions

Spatial hypertext tools take advantage of users’ spatial and visual intelligence.
Users’ organise their information informally, without expressing rules before-
hand. This has several advantages over more rigid hypertext structures. Some
advantages include aiding in the explanation of ideas to colleagues and support-
ing structured ambiguity. Once an information workspace is created, users then
navigate around their areas trying to find patterns and gain new insights. Spatial
hypertext tools are not so well suited to this task. One solution is to introduce
relevant information visualisation techniques.

Similarities between spatial hypertext tools and information visualisation
tools exist (e.g., the information to be organised is the same), the difference
is whether it is organised by a person or a machine. In spatial hypertext tools,
users’ organise without defining explicit rules. In information visualisation tools,
computers organise with pre-defined rules. At present, the main focus for infor-
mation visualisation tools is on creating an automatic visualisation from pre-
defined rules.

This paper considered how information visualisation techniques could apply to
spatial hypertext tools. It discussed various usability aspects of both tools, and
described a possible tool that combines both. As so many similarities exist, it is
possible to transfer some techniques, and therefore improve spatial hypertext tools.

References

1. Russell, D.M., Stefik, M.J., Pirolli, P., Card, S.K.: The cost structure of sensemaking.
In: Proceedings of the SIGCHI conference on Human factors in computing systems,
ACM Press (1993) 269–276

2. Shipman, F.M., Hsieh, H., Maloor, P., Moore, J.M.: The visual knowledge builder: a
second generation spatial hypertext. In: Proceedings of the twelfth ACM conference
on Hypertext and Hypermedia, ACM Press (2001) 113–122

Applying Information Visualisation Techniques to Spatial Hypertext Tools 93

3. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information
visualizations. In: Proceedings of the 1996 IEEE Symposium on Visual Languages,
IEEE Computer Society (1996) 336

4. Nelson, T.H.: Complex information processing: a file structure for the complex, the
changing and the indeterminate. In: Proceedings of the 1965 Twentieth National
Conference, ACM Press (1965) 84–100

5. Malone, T.W.: How do people organize their desks?: Implications for the design of
office information systems. ACM Trans. Inf. Syst. 1 (1983) 99–112

6. Barreau, D., Nardi, B.A.: Finding and reminding: file organization from the desktop.
SIGCHI Bull. 27 (1995) 39–43

7. McGookin, D.K., Brewster, S.A.: Fishears: The design of a multimodal focus and
context system. In: Proceedings of the IHM HCI. (2001)

8. Robertson, G., Czerwinski, M., Larson, K., Robbins, D.C., Thiel, D., van Dantzich,
M.: Data mountain: using spatial memory for document management. In: Proceed-
ings of the Eleventh Annual ACM Symposium on User interface software and tech-
nology, ACM Press (1998) 153–162

9. Card, S., Robertson, G., York, W.: The web-book and the web forager: An informa-
tion workspace for the world-wide web. In: Proceedings of the CHI’96, ACM Con-
ference on Human Factors in Computing Systems, ACM Press (1996) 111–117

10. http://sourceforge.net/projects/caliph emir/: Caliph & emir (2004)
11. Andrews, K., Kienreich, W., Sabol, V., Becker, J., Droschl, G., Kappe, F., Granitzer,

M., Auer, P., Tochtermann, K.: The infosky visual explorer: exploiting hierarchical
structure and document similarities. Information Visualization 1 (2002) 166–181

12. http://www.w3.org/2001/11/IsaViz/: Isaviz (2001)

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 94 – 107, 2004.
© Springer-Verlag Berlin Heidelberg 2005

An Agenda for Structural Computing Research

Uffe Kock Wiil1, David L. Hicks2, and Peter J. Nürnberg2

1 Mærsk Mc-Kinney Møller Institute, University of Southern Denmark,
Campus 55, 5230 Odense M, Denmark

ukwiil@mip.sdu.dk
2 Department of Software and Media Technology, Aalborg University Esbjerg,

Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
{hicks, pnuern}@cs.aue.auc.dk

Abstract. Structure plays an important role in knowledge work. The overall
goal of structural computing research is to provide effective support for knowl-
edge workers. Structural computing research has reached a level of maturity,
where it is relevant and essential to define and discuss common research direc-
tions. This paper presents an agenda for structural computing research. A con-
ceptual architecture for a structural computing environment is presented to
serve as a point of reference (framework) for discussing important issues facing
the structural computing research community.

1 Introduction

Structural computing is a relatively new research direction that grew out of the very
successful work on open hypermedia systems (OHS). OHS research was a focal point
in several major hypermedia research groups in the 1990’s [4, 8, 9, 43]. A successful
workshop series ran from 1994 onwards [44–48]. In 1996, the Open Hypermedia
Systems Working Group (OHSWG) started their work towards common de-facto
standards for system architectures, service definitions, and application integration
(interoperability) [6, 30].

The term “structural computing” was coined in 1997 [26]. The structural comput-
ing idea was driven by the philosophy of the “primacy of structure over data” [26]. In
a structural computing environment, structure is given first class status allowing it to
be manipulated independently of data. There are two important defining factors of
structural computing environments. Firstly, structure awareness is pushed deep into
the environment – in one case as deep as the underlying operating system [27]. Sec-
ondly, a structural computing environment provides support for multiple structure
domains within the same environment such as support for associative linking (naviga-
tional domain), spatial ordering (spatial domain), and classification (taxonomic do-
main).

Structure plays an important role in knowledge work [24]. The overall goal of
structural computing research is to provide effective support for knowledge work-
ers. Structural computing is an approach to designing and implementing computing
environments where structure plays a central role at all levels in the environment
(structure awareness) and where different types of structure used in different phases

 An Agenda for Structural Computing Research 95

or types of knowledge work can co-exist and interoperate (multiple structure
domains).

Knowledge workers, who make use of structural computing environments, may use
different knowledge tools that each supports a specific subtask in their knowledge
work. For instance, if a knowledge worker is given the task of reviewing (understand-
ing, organizing, and presenting) a specific body of knowledge, she may use a spatial
ordering tool in the first phases of her work where no formal understanding of the
knowledge entities exists. In the next phases she may add metadata to customize the
knowledge entities. She may also add links to associate individual knowledge entities.
Finally, she may use a taxonomic tool to classify the knowledge entities to reflect her
obtained understanding of the knowledge entities.1

In 1999, a workshop series on structural computing was initiated [23, 28–29]. By
2002, this series had been replaced by the Metainformatics Symposium [11, 22]. The
first structural computing environments are now well on their way (e.g., FOHM [16–
17], Callimachus [32, 35], Themis [2–3], XCHIPS/EXTERNAL [36–37], IUHM [14,
18], and Construct [39, 41]). The work in the research community has reached a level
of maturity, where it is relevant and essential to define and discuss common research
directions for the future.

This paper presents an agenda for structural computing research. Section 2 presents
a conceptual architecture for structural computing environments and presents existing
prominent structural computing work. Important issues facing the structural comput-
ing research community are discussed in Section 3. Section 4 concludes the paper.

2 Structural Computing Environments

This section presents a conceptual architecture for structural computing environments
that will serve as a point of reference (framework) for presenting existing structural
computing work (this section) and for discussing the prominent issues faced by the
structural computing community (next section).

2.1 Conceptual Architecture

As mentioned, structural computing research grew out of OHS research. Many ideas
relating to architectures, services, etc. found in structural computing environments can
be traced back to OHS research. A prominent example of an “inherited” idea is the
layered architectural model with provision of services wrapped in components with
well-defined interfaces – inherited from the research on component-based OHS [42].
Therefore, the conceptual architecture presented in this section (Fig. 1) is not much
different from the reference architecture defined by the OHSWG [30].

Structure is the fundamental building block in a structural computing environment.
The basic structural abstraction (the structural atom) is provided by a structure store
at the foundation layer. All other structural abstractions in the environment are

1 A more detailed scenario of the use of structuring tools in knowledge work is presented in

[24].

96 U.K. Wiil, D.L. Hicks, and P.J. Nürnberg

modeled upon the structural atom. Thus, a structural computing environment is struc-
ture aware at its most basic layer (the first defining factor). The foundation layer also
provides other basic infrastructure services that handle naming and location, access
control, event notifications, versioning, and locking (concurrency control).

Fig. 1. The conceptual architecture for a structural computing environment

The middleware layer hosts multiple structure services that each supports a specific
structural domain (i.e., navigational structures for associative linking of knowledge,
taxonomic structures for classifying knowledge, or spatial structures to organize
knowledge using a spatial metaphor). Thus, multiple structural domains are supported
within the same environment (the second defining factor).

Knowledge tools in a structural computing environment use structure service func-
tionality to augment and enhance the service they provide to end users (knowledge
workers). For example, an editor application could utilize the facilities of a naviga-
tional structure service to provide a basic linking capability for text objects. Similarly,
a graphical drawing tool might incorporate the services of a spatial structure service in
order to enhance its information management capabilities.

2.2 Existing Work

Though a relatively new field, research results have already begun to emerge for the
structural computing area [11, 22–23, 28–29, 38]. Research has started on a variety of
fronts including the design and development of structural computing environments

 An Agenda for Structural Computing Research 97

and the use of structural computing techniques and technology to support specific
application areas. The intention in this section is to examine the overall approach of
several structural computing projects to provide a representative sample of the re-
search results that have been reported. Specific details of these projects will be dis-
cussed together with the research issues in Section 3.

Researchers at Texas A&M University conducted the HOSS project. It proposed a
view of hypermedia that considered it to be a new computing paradigm [27], thereby
laying the groundwork for much of what was to become structural computing. The
HOSS project sought to integrate hypermedia (structure) into the lowest, most funda-
mental levels of a computing environment – the operating system.

Researchers at the University of Patras have proposed Callimachus a general-
purpose structural computing environment that supports a wide range of structural
abstractions [32, 35]. The objective is to support not only a variety of structural do-
mains such as the navigational, spatial, and taxonomic domains, but also provide
support for specialization within each domain (sub-domains) and the combination of
domains (applications).

Construct is a general-purpose structural computing environment from Aalborg Uni-
versity Esbjerg [41]. A primary goal of the project is to provide a comprehensive envi-
ronment for supporting structure (e.g., navigational, taxonomic, spatial, metadata, and
cooperation). Tools are provided to assist in the development of structure services –
UML Tool, which allows structure services to be specified in the UML language, and
CSC (Construct Service Compiler), which can generate code based on structure service
specifications [40].

The Fundamental Open Hypermedia Model (FOHM) was developed at the Univer-
sity of Southampton [16–17]. FOHM is based on, and is an extension of the OHP
(open hypermedia protocol) [6], a standard that was developed by the OHSWG to
support the interoperability of hypermedia systems. OHP was specifically targeted to
support interoperability within the navigational hypermedia domain. FOHM broadens
its applicability to also include the spatial, and taxonomic hypermedia domains.
FOHM promotes interoperability between domains.

At the University of Colorado researchers have in the Themis project focused on
the application of structural computing technologies and techniques to a particular
application area, software engineering [2–3]. They have analyzed a number of soft-
ware engineering sub-domains in order to generate a general set of requirements that
structural computing environments must meet in order to accommodate the software
engineering area. Themis has evolved into a general-purpose structural computing
environment.

Research at the Fraunhofer IPSI Institute (formerly GMD-IPSI) has been con-
ducted that involves user interface issues of structural computing [36–37]. As part of
the project, a graphical user interface has been designed that integrates features from
the navigational, spatial, taxonomic, workflow, and cooperation domains. This work
is performed under the XCHIPS/EXTERNAL project, which promotes and explores
interoperability at the application layer in structural computing environments.

Researchers at the University of Montpellier have worked on the IUHM project
[14, 18]. The IUHM (Information Unit Hypermedia Model) is an architectural model

98 U.K. Wiil, D.L. Hicks, and P.J. Nürnberg

aimed at supporting modeling and implementation of dynamic systems. The focus in
the IUHM project is on information integration. Structural computing techniques are
used in the management of large-scale extensibility and tailorability. IUHM has been
used in the implementation of OPALES – an open, collaborative digital library system
for audio and visual data [19].

3 Research Issues

This section presents some of the important research issues facing the structural com-
puting community. The following discussion focuses on issues that specifically relate
to structural computing research. Several general issues relating to design and imple-
mentation of component-based OHS discussed by the OHSWG (such as reference
architectures, application integration, and interoperability) [6, 30] and general issues
discussed by Nürnberg et al. in their 1998 research agenda for OHS [25] are also
relevant for current structural computing research. In a few cases there will quite
naturally be overlap between the current structural computing issues and the issues
discussed by the OHSWG and the 1998 OHS research agenda. In those cases, the
intention in this paper is to provide the latest and most up-to-date view on the issues.

3.1 Development Methodology

The structural computing community claims that structural computing environments
are different from traditional software environments. Structural computing provides a
different perspective on how to understand and develop software environments that
includes a new structural dimension – in addition to the well understood data (model)
and behavior (functionality) dimensions of traditional software environments.

Developers of software environments have the option to use a formalized method-
ology that explain in detail a number of steps in the process of software development
(i.e., system definition, requirements definition, analysis, design, implementation, test,
etc.). Such development methods are mature and are used extensively in the develop-
ment of various types of software environments. Examples of modern, mature devel-
opment methods include Object-oriented Analysis and Design [15] and Unified Proc-
ess [12].

Yet, it is not explained in the structural computing literature how we should ap-
proach the difficult tasks of developing structural computing environments. There are
currently a number of open issues. What steps are involved in developing a structural
computing environment? To what extent can we reuse ideas and tasks from existing
modern software development methods? What (if any) tasks in software development
have to be handled in a different manner when developing a structural computing
environment?

Despite the fact that no structural computing research group has been explicit about
their development methodology, structural computing environments are being devel-
oped in many different places. Therefore, much (implicit) knowledge about
development exists in these research groups. Given the number of structural comput-
ing environments available today, it would be wise to start formalizing the

 An Agenda for Structural Computing Research 99

development process. Both existing and new research groups in structural computing
would benefit greatly from having a common view on how to develop their environ-
ments.

Once a common consensus has been reached on a development methodology, it is
possible to think in terms of building development tools that can support different
stages in the development process.

Construct is an example of a structural computing project that provides a develop-
ment environment consisting of different tools that ease the development of new ser-
vices wrapped in components [40]. New service components are developed in two
steps. The first step is to specify the interface (API) of the component in either UML
or IDL. These high-level specifications of components are then given as input to the
Construct Service Compiler, which generates service skeletons wrapped in compo-
nents. The second step is to fill-in the semantic parts (methods bodies) of the individ-
ual operations in the component interface.

Yet, there is no overall notion of a development methodology in Construct. This
“backwards” approach of having development tools but no overall methodology is
problematic. The basic problem with the Construct approach is that the development
support starts relatively late in the development process, when the developer knows
what structures to implement and how to group them into services (components). It is
not been made explicit how to take the step(s) from having knowledge about a spe-
cific work domain to having a description of what structures should be used to sup-
port the work in this domain. The community needs to define how to perform a
“structural analysis” of a work domain to identify necessary structural support. Can
we reuse ideas from existing software development methodologies that specify how to
do domain analysis or do we have to start completely from scratch and create a new
development methodology for structural computing?

In summary, the notion of a development methodology for structural computing
that specifies and supports the individual steps in the development process, that
guides the overall process, and that specifies how to generate standardized documen-
tation as the result of the individual steps is still unchartered territory in structural
computing research.

3.2 Infrastructure

Computing infrastructure is part of any computing environment. Each type of com-
puting environment has specific needs with respect to infrastructure support depend-
ing on the overall task of the computing environment.

The infrastructure support needed in structural computing environments is influ-
enced by at least three things: the overall work tasks (knowledge work), the focus on
both structure and data abstractions, as well as the overall evolution in system archi-
tectures and technologies.

Knowledge work often involves more than one person. The collaboration in a
group of knowledge workers should not be limited in time (same time / different
times) and space (same place / different places) [7]. This alone immediately poses
several requirements on the infrastructure. The distributed nature of knowledge work

100 U.K. Wiil, D.L. Hicks, and P.J. Nürnberg

implies the need for basic distribution support such as naming and location services.
The collaborative nature of knowledge work implies the need for basic collaboration
services such as access control, event notification, and locking. The evolutionary
nature of knowledge work implies the need for services that support tracking and
maintaining changes over time (versioning).

These infrastructure requirements are not new to the hypermedia field, and it is not
surprising to find them in the context of structural computing environments also. One
of the defining characteristics of structural computing complicate the provision of
these services in structural computing environments compared to general computing
environments, namely the high degree of structural awareness. Services that provide
access control, locking, event notifications, and versioning need to be able to handle
the structural dimension also. Access control should also apply to structural abstrac-
tions. A knowledge worker needs to have appropriate access permissions to for in-
stance follow a link and open a knowledge space. Locking should also apply to struc-
tural abstractions such as metadata. Versioning of structure becomes critical in order
to track the evolution of the knowledge work in a complete manner. Event notifica-
tions should also be generated when structural abstractions are created, modified, and
deleted. These are just a few examples of the increased complexity of infrastructure
services due to the structural dimension in structural computing environments.

The evolutionary trend in structural computing environments that can be traced
back to component-based OHS also complicate the provision of infrastructure ser-
vices. The benefits of the layered architectural model with provision of services
wrapped in components with well-defined interfaces (inherited from previous work
on component-based OHS) are increased flexibility and increased usability. The
drawbacks are less control and increased complexity. Infrastructure services are easier
to build for a monolithic system that has full control over data and structure storage,
functionality, and presentation. In component-based architectures, data and structure
storage, functionality, and presentation are distributed over several autonomous com-
ponents resulting in less control and increased complexity (e.g., increased communi-
cation between components).

Another issue raised by the current architectural approach is that of combination
services. This is best illustrated with an example. Consider a structure service that
needs to combine two existing infrastructure services (e.g., structure storage and ver-
sion control) to provide a versioned structural atom. How should this be done? Should
the responsibility be placed on the structure service by having this service use the
functionality of the structure store and the version service in a certain pattern? Should
a new infrastructure service be defined that combined the needed support from the
two infrastructure services? Should the two infrastructure services be modified to
communicate with each other to provide the needed functionality?

Some of these issues have been addressed by current structural computing projects.
Callimachus has experimented with naming and location services [33]. Construct has
experimented with collaboration services (sessions, awareness, and events) [39].
However, no structural computing environment has addressed the full range of infra-
structure issues yet.

 An Agenda for Structural Computing Research 101

In summary, much work still needs to be done on defining and experimenting with
infrastructure services in structural computing environments. It should be possible to
reuse many ideas, concepts, and mechanisms from earlier generations of hypermedia
systems. Until more experimental work has been made, no one knows the full impli-
cations of the increased complexity.

3.3 Interoperability

In an environment with multiple structure services (one of the defining factors of
structural computing) interoperability plays an important role. The fact that services
are decoupled and modularized at all architectural layers raises a number of issues
regarding the interoperability of the decomposed services.2

From the perspective of the knowledge workers there should be smooth transitions
between the different phases in knowledge work. Each phase might include work with
different structure services as the knowledge work scenario in the Introduction indi-
cates. This means that the structure manipulated by one structure service should be
made available to other structure services. How this should be done is not obvious.
One could imagine an approach where structure is translated from one type to an-
other. One could also imagine that the structure of one structure service could be
interpreted by another structure service.

In general, interoperability can occur at all levels in a structural computing system.
The XCHIPS/EXTERNAL structural computing environment provides an example of
interoperability at the application layer [36–37]. The user interface in
XCHIPS/EXTERNAL combines structures from several structure domains in the
same interface.

Nürnberg et al. first discussed the issues of interoperability among structure ser-
vices (middleware layer), specifically the issues involved in having one structure
service interpret the structure of another structure service (e.g., a navigational struc-
ture service that can interpret spatial structures) [25]. Later, Millard et al. introduced
the FOHM model, which addresses interoperability between three particular structure
services (spatial, navigational, and taxonomic) by defining a common data model for
these three structural domains [17].

Considering interoperability between different infrastructure services (foundation
layer) is also relevant. This implies the need for each infrastructure service to be able to
interpret (translate) the abstractions manipulated by other infrastructure services. Is this a
realistic or even useful goal? For example, consider an access control service that can
interpret the abstractions of a locking service. This particular example may make sense,
since the fact that a document is locked could be interpreted as a special level of access
control denying other people the ability to open the document. Clearly, we cannot yet say
that translating from any given infrastructure service to any other is a useful undertaking,
but it does seem that at least some of these translations may be useful.

One way to discuss interoperability is to distinguish between horizontal and verti-
cal interoperability [41]. Horizontal (intra-layer) interoperability covers the cases

2 Parts of this section are based on similar discussions in earlier papers – in particular [25] and

[41].

102 U.K. Wiil, D.L. Hicks, and P.J. Nürnberg

where a service at one layer can interpret (translate) abstractions provided by other
services at the same layer. Vertical (inter-layer) interoperability covers the cases
where a service at one layer can interpret and use abstractions provided by services at
other layers. Vertical interoperability occurs in layered systems that provide different
abstractions at different layers.

Atzenbeck et al. has recently started working on the definition of a structure do-
main interoperability space. The first results are reported in [5].

In summary, interoperability is a complex, mostly unexplored issue. The different
interoperability options should be mapped out in detail (e.g., based on the horizontal
versus vertical distinction) and various experiments should be made to explore the
potential benefits that interoperability between services can provide.

3.4 The Structural Atom

A defining characteristic of structural computing environments is the awareness of
structure deep in the environment. This characteristic has most often been linked with
the existence of a basic structural building block (often called the structural atom) of a
structural computing environment. The structural atom is generally thought to be the
foundation for all abstractions in a structural computing environment. Much work has
been done to address this issue – since every full-blown structural computing envi-
ronment has a structural atom. Although details of implementation vary among the
different approaches, all such structural atoms basically have the ability to both repre-
sent structure and to be structured (i.e., participate in other structures).

When designing a structural computing environment it is important to decide
where (how deep) in the system the awareness of structure should be placed. The
answer probably depends on the task(s) that the structural computing environment
should support. Not all knowledge work tasks may need an environment with struc-
ture awareness at all levels. General-purpose structural computing environments, such
as Callimachus [32], Themis [2], and Construct [41], are structure aware at the foun-
dation layer (i.e., they provide their structural atom in this layer). Other more special-
ized environments such as FOHM [16], XCHIPS/EXTERNAL [36], and IUHM [14]
are structure aware at the middleware layer, while HOSS [27] is structure aware at the
operating system layer. In principle structure awareness could even be pushed below
the operating system layer inside dedicated hardware – for instance in a special struc-
tural computing chip or co-processor. However, no research group has explored the
latter options yet.

When designing the structural atom, both a top down and a bottom up approach
can be taken. User requirements or scenarios of knowledge work drive the top down
approach. With this approach the requirements at one level in the architecture (start-
ing with the knowledge worker) is used to design the support at the level below.
Following from this, the structural atom can be designed based on requirements from
several different structure services. The bottom up approach is radically different.
With this approach a general, flexible, and powerful structural atom is designed so
that it presumably can support all possible structure services. So far general-purpose
structural computing environments have tended to use the top down approach to de-
sign structure services and the bottom up approach to design their structural atom.

 An Agenda for Structural Computing Research 103

This current practice has led to another question. How should the gap between the
top down generated structure services and the bottom up generated structural atom be
bridged? The structural atom provides very general abstractions, yet the abstractions
needed in the structure services are quite specific. Typically, this has been addressed
in two different ways. Themis [2] and Callimachus [32] use an object-oriented ap-
proach where the structural atom can be specialized into specific structures needed in
structure services. Construct [41] uses a different approach where different structure
services interpret the content of the structural atom in different ways to support differ-
ent structural abstractions.

A different view of what constitutes the basic building block of a structural com-
puting environment has recently been proposed. The approach in the EAD project
[20] is radically different from the structural atom approach taken by most structural
computing environments. The EAD model focuses on the semantics in structuring the
data. Thus, meaning is represented by structure that contains data and not (necessar-
ily) the data themselves. The EAD model could in principle replace the structural
atom in an existing structural computing environment without affecting the function-
ality at the upper layers in the architecture. The EAD model is said to be more power-
ful than the structural atom approach with respect to flexibility and its modeling capa-
bility [20].

The question of what constitutes the basic building block has puzzled the hyper-
media community since the first hypermedia systems were built in the 1960s. For
many years, the hypermedia community addressed the issue with mostly data oriented
approaches – the WWW is a prominent example of a data oriented approach where
links are embedded in the documents (nodes). Later in the evolution, links (or more
generally speaking structure) were given first class status. From 1997 to around 2002,
structural computing environments typically took the approach of creating a structural
atom based on a data / structure synthesis view. The latest trend starting in 2003 is to
try to re-raise behavior to have first class status and create a structural atom based on
a data / structure / behavior synthesis view.3 Examples of this can be found in relation
to the Themis [1], Callimachus [34], and Construct [20] projects. A thorough analysis
of these trends is beyond the scope of this paper.

No matter how the basic support for structure is approached, it is important to have
specific goals and possible strategies in mind.

The overall goal should be to have pervasive, powerful, and easy to use basic building
blocks in a structural computing environment. Pervasive in the sense that they can cross
boundaries of platforms, operating systems, applications, etc. Powerful in the sense that
they can model (capture) all the necessary abstractions (data, structure, and behavior
abstractions according to the latest trend). Easy to use in the sense that developers find
them easy to work with – and possibly also that they are human readable?

3 Behavior did have first class status in some previous hypermedia systems (e.g., Multicard [31]

and Proxhy [13]). However, this feature was not inherited into the modern component-based
generation of (open hypermedia and structural computing) systems. Modern systems tend to
provide support for behavior at a conceptual level, but few systems (if any) have implementa-
tions where behavior can be manipulated independently of data and structure.

104 U.K. Wiil, D.L. Hicks, and P.J. Nürnberg

There are several possible strategies for where to place the basic structural support
(building blocks) in the computing environment. They can be provided at the operat-
ing system level for all developers to use. They can be provided in a specific pro-
gramming language (say Java) for all Java developers to use. They can be provided in
a dedicated framework (such as Themis) for all developers of Themis to use. They
can be provided in (dedicated) hardware for all developers to use.

In summary, every structural computing system has a different approach to the
structural atom. There are many issues to consider when designing a structural ele-
ment – such as goal and strategy. So far no approach claims to have found anything
near the perfect solution.

3.5 Structure Diversity or Structure Unity

Structural computing environments promote structure diversity. One of the defining
factors is the support for multiple structures at the middleware and application layers.
Yet, the trend is at the same time also to promote structure unity – exemplified by the
existence of a single structural atom at the foundation layer in many structural com-
puting environments.

Thinking about structure diversity versus structure unity is a useful exercise that forces
developers to reconsider their design rationale. Why is it the case that many structural
computing systems promote diversity at some levels and unity at other levels? Does it
reflect a conscious decision? Is it a natural way to construct these environments?

Promoting structure diversity makes a lot of sense since this is exactly what is re-
quired to support knowledge work. Since knowledge workers interact with tools at the
application layer, it is clearly necessary to provide structure diversity at the applica-
tion layer. But, it is also necessary to promote structure diversity at the middleware
layer? Structural computing researchers seem to think so, since they all promote di-
versity at the middleware layer in their environments.

Another question to consider is whether a unity or diversity approach to defining
the structural atom should be taken? The unity approach advocates that there is only
one “mother” structure (one structural atom) that everything else is based upon. The
diversity approach advocates that there could be numerous different structural atoms
each targeted at supporting different specialized structure services and knowledge
worker tasks. The pure (extreme) unity approach could seem arrogant. Do we really
think that we can build the one mother structure? The pure (extreme) diversity ap-
proach could seem impractical. Do we really want to have a structural base type for
each individual application of a structure service? If the two approaches represent two
extremes, then there must be several possible approaches in between the two ex-
tremes. What would they be like?

Hicks et al. [10] present a structure diversity space that can serve as a tool to
study structural diversity or lack thereof in structural computing environments.
The purposes of the structure diversity space are to serve as a description space in
which the structural diversity of a specific computing environment can be com-
pletely and concisely described, to highlight and assist in reconciling differences in

 An Agenda for Structural Computing Research 105

structural diversity between computing environments, and to serve as a design
space in which important diversity related decisions could be considered.

In summary, a discussion on structure diversity versus structure unity can help the
community to gain a deeper understanding of possible foundations of structural com-
puting, which will help guide future research.

4 Conclusion

Structural computing research has reached a level of maturity, where it is relevant and
essential to define and discuss common research directions. Initially, a conceptual archi-
tecture for a structural computing environment was presented to serve as a point of refer-
ence for discussing important research issues facing the structural computing research
community. The main contribution of the paper is the presentation and discussion of a
research agenda for structural computing research focusing on five prominent issues:
development methodology, infrastructure, interoperability, the structural atom, and struc-
ture diversity or structure unity. The structural computing field has many interesting
challenges ahead. This agenda is aimed at inspiring future research in the area of
structural computing.

References

1. Anderson, K. M., Sherpa, S. A., and Van Lepthien, W. 2004. Structure and Behavior
Awareness in Themis. In Proceedings of the 2003 ACM Conference on Hypertext, (Not-
tingham, UK, Aug.), ACM Press, 138-147.

2. Anderson, K. M., Sherpa, S. A., and Van Lepthien, W. 2003. Structural Templates and
Transformations: The Themis Structural Computing Environment. In [38], 47-71.

3. Anderson, K. and Sherba, S. 2001. Using Structural Computing to Support Information In-
tegration In [28], 151-159.

4. Anderson, K., Taylor, R., and Whitehead, E. J. 1994. Chimera: Hypertext for heterogene-
ous software environments. In Proceedings of the 1994 ACM Conference on Hypertext,
(Edinburgh, Scotland, Sep.), ACM Press, 94-107.

5. Atzenbeck, C., Wiil, U. K., and Hicks, D. L. 2003. Toward a Structure Domain Interop-
erability Space. In [11], 66-71.

6. Davis, H. C., Millard, D. E., Reich, S., Bouvin, N. O., Grønbæk, K., Nürnberg, P. J., Sloth,
L., Wiil, U. K., and Anderson, K. M. 1999. Interoperability between Hypermedia Systems:
The Standardisation Work of the OHSWG. In Proceedings of the Tenths ACM Conference
on Hypertext, (Darmstadt, Germany, Feb.), ACM Press, 201-202.

7. Ellis, C. A., Gibbs, A., and Rein, G. 1991. Groupware: Some issues and experiences.
Communications of the ACM, 34(1): 38-58.

8. Grønbæk, K., and Trigg, R. 1999. From Web to Workplace – Designing Open Hypermedia
Systems. MIT Press.

9. Hall, W., Davis, H., and Hutchings, G. 1996. Rethinking Hypermedia – The Microcosm
Approach. Kluwer Academic Publishers.

10. Hicks, D. L., Wiil, U. K., and Nürnberg, P. J. 2004. Towards a Structure Diversity Space.
In Proceedings of the 2004 ACM Conference on Hypertext, (Santa Cruz, CA, Aug.), ACM
Press, 239-246.

106 U.K. Wiil, D.L. Hicks, and P.J. Nürnberg

11. Hicks, D. L. Ed. 2003. Proceedings of the Second International Metainformatics Sympo-
sium, Lecture Notes in Computer Science (LNCS 3002), Springer.

12. Jacobson, I., Booch, G., and Rumbaugh, J. 1999. The Unified Software Development
Process. Addison-Wesley.

13. Kacmar, C. J., and Leggett, J. J. 1991. PROXHY: A Process-Oriented Extensible Hyper-
text Architecture. ACM Transactions on Information Systems, 9, 4, 399-419.

14. King, P. Nanard, M., Nanard, J., and Rossi, G. 2003. A Structural Computing Model for
Dynamic Service-Based Systems. In [11], 100-118.

15. Mathiassen, M., Munk-Madsen, A., Nielsen, P. A., and Stage, J. 2000. Object-oriented
Analysis & Design. Marko Publishing.

16. Millard, D. E. 2003. Discussions at the Data Border: From Generalised Hypertext to Struc-
tural Computing. In [38], 95-114.

17. Millard, D., Moreau, L., Davis, H., and Reich, S. 2000. FOHM: A Fundamental Open Hy-
pertext Model for Investigating Interoperability Between Hypertext Domains. In Proceed-
ings of the 2000 ACM Hypertext Conference, (San Antonio, TX, Jun.), ACM Press, 266-
267.

18. Nanard, M., Nanard, J., and King, P. 2003 IUHM, A Hypermedia-Based Model for Inte-
grating Open Services, Data and Metadata. In Proceedings of the 2003 ACM Conference
on Hypertext, (Nottingham, UK, Aug.), ACM Press, 128-137.

19. Nanard, M., and Nanard, J. 2001. Cumulating and Sharing End-Users Knowledge to Im-
prove Video Indexing in a Video Digital Library. Proceedings of the 2001 ACM / IEEE
Joint Conference on Digital Libraries, (Roanoke, VA, Jun.), ACM Press, 282-289.

20. Nürnberg, P. J., Wiil, U. K., and Hicks, D. L. 2004. Rethinking Structural Computing In-
frastructures. In Proceedings of the 2004 ACM Conference on Hypertext, (Santa Cruz,
CA, Aug.), ACM Press, 247-255.

21. Nürnberg, P. J., Wiil, U. K., and Hicks, D. L. 2003 A Grand Unified Theory for Structural
Computing. In [11], 1-16.

22. Nürnberg, P. J. Ed. 2002. Proceedings of the First International Metainformatics Sympo-
sium, Lecture Notes in Computer Science (LNCS 2641), Springer.

23. Nürnberg, P. J. Ed. 1999. Proceedings of the First International Work on Structural Com-
puting, Technical Report AUE-CS-99-04, Aalborg University Esbjerg, Denmark.

24. Nürnberg, P. J., Wiil, U. K., and Leggett, J. J. 1998. Structuring Facilities in Digital Li-
braries. In Proceedings of the Second European Conference on Digital Libraries, (Crete,
Greece, Sep.), Springer, 295-313.

25. Nürnberg, P. J., Leggett, J. J., and Wiil, U. K. 1998. An Agenda for Open Hypermedia Re-
search. In Proceedings of the 1998 ACM Conference on Hypertext, (Pittsburgh, PA, Jun.),
ACM Press, 198-206.

26. Nürnberg, P. J., Leggett, J. J., and Schneider, E. R. 1997. As We Should Have Thought. In
Proceedings of the 1997 ACM Hypertext Conference, (Southampton, UK, Apr.), ACM
Press, 96-101.

27. Nürnberg, P. J., Leggett, J. J., Schneider, E., R., and Schnase, J. L. 1996. HOSS: A New
Paradigm for Computing. In Proceedings of the 1996 ACM Hypertext Conference, (Wash-
ington, DC, Mar.), ACM Press, 194-202.

28. Reich, S., Tzagarakis, M. M., and De Bra, P. M. E. Eds. 2001. Proceedings of the Third
International Workshop on Structural Computing, Lecture Notes in Computer Science
(LNCS 2266), Springer.

29. Reich, S., and Anderson K. M. Eds. 2000. Proceedings of the Second International Work-
shop on Structural Computing, Lecture Notes in Computer Science (LNCS 1903),
Springer.

 An Agenda for Structural Computing Research 107

30. Reich, S., Wiil, U. K., Nürnberg, P. J., Davis, H. C., Grønbæk, K., Anderson, K. M.,
Millard, D. E., and Haake, J. M. 1999. Addressing Interoperability in Open Hypermedia:
The Design of the Open Hypermedia Protocol. Special Issue on Open Hypermedia, The
New Review of Hypermedia and Multimedia (NRHM), 5, 207-248.

31. Rizk, A., and Sauter, L. 1992. Multicard: An Open Hypermedia System. In Proceedings of
the 1992 ACM Hypertext Conference, (Milan, Italy, Nov.), ACM Press, 4-10.

32. Tzagarakis, M., Avramidis, D., Kyriakopoulou, M., Schraefel, M. M. C., Vaitis, M. and
Christodoulakis, D. 2003. Structuring Primitives in the Callimachus Component-Based
Open Hypermedia System. In [38], 139-162.

33. Tzagarakis, M., Karousos, N., Christodoulakis, D., and Reich, S. 2000. Naming as a fun-
damental concept of open hypermedia systems. Proceedings of the 2000 ACM Hypertext
Conference, (San Antonio, TX, May), ACM Press, 103-112.

34. Vaitis, M., Tzagarakis, M., Grivas, K., and Chrysochoos, E. 2003. Some Notes on Behav-
ior in Structural Computing. In [11], 143-149.

35. Vaitis, M., Papadopoulos, A., Tzagarakis, M., and Christodoulakis, D. 2000. Towards
Structure Specification for Open Hypermedia Systems. In [29], 160-169.

36. Wang, W. 2003. Visualizing and Interacting with Hypermedia-Based Process-Centric En-
terprise Models. In [38], 73-93.

37. Wang, W. and Fernandez, A. 2001. A Graphical User Interface Integrating Features from
Different Hypertext Domains. In [28], 141-150.

38. Wiil, U. K., Nürnberg, P. J., and Hicks D. L. Eds. 2003. Structural Computing: Research
Directions, Systems, and Issues. Special Issue on Structural Computing, Journal of Net-
work and Computer Applications, 26, (1).

39. Wiil, U. K., Tata, S., and Hicks, D. L. 2003. Cooperation Services in the Construct Struc-
tural Computing Environment. In [38], 115-137.

40. Wiil, U. K. 2002. Lessons Learned with The Construct Development Environment. In
[22], 9-17.

41. Wiil, U. K., Hicks, D. L., and Nürnberg, P. J. 2001. Multiple Open Services: A New Ap-
proach to Service Provision in Open Hypermedia Systems. In Proceedings of the 2001
ACM Conference on Hypertext, (Århus, Denmark, Aug.), ACM Press, 83-92.

42. Wiil, U. K., and Nürnberg, P. J. 1999. Evolving Hypermedia Middleware Services: Les-
sons and Observations. In Proceedings of the 1999 ACM Symposium on Applied Comput-
ing, (San Antonio, TX, Feb.), ACM Press, 427-436.

43. Wiil, U. K., and Leggett, J. J. 1997. Workspaces: The HyperDisco approach to Internet
distribution. In Proceedings of the 1997 ACM Hypertext Conference, (Southampton, UK,
Apr.), ACM Press, 13-23.

44. Wiil, U. K., Ed. 1999. Proceedings of the 5th Workshop on Open Hypermedia Systems.
Technical Report CS-99-01, Aalborg University Esbjerg.

45. Wiil, U. K., Ed. 1998. Proceedings of the 4th Workshop on Open Hypermedia Systems.
Technical Report CS-98-01, Aalborg University Esbjerg.

46. Wiil, U. K. Ed. 1997. Proceedings of the 3rd Workshop on Open Hypermedia Systems.
Scientific Report 97-01, The Danish National Centre for IT Research.

47. Wiil, U. K., and Demeyer, S., Eds. 1996. Proceedings of the 2nd Workshop on Open Hy-
permedia Systems. UCI-ICS Technical Report 96-10, Department of Information and
Computer Science, University of California, Irvine.

48. Wiil, U. K., and Østerbye, K., Eds. 1994. Proceedings of the ECHT '94 Workshop on
Open Hypermedia Systems. Technical Report R-94-2038, Department of Computer Sci-
ence, Aalborg University.

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 108 – 112, 2004.
© Springer-Verlag Berlin Heidelberg 2005

Assessing the Impacts of Open Hypermedia Problems on
Structural Computing

Nikos Karousos1,2 and Nikos Tsirakis1,2

1 Research Academic Computer Technology Institute,
15600, Rion, Greece

karousos@cti.gr
2 Department of Computer Engineering & Informatics,

University of Patras, 26500 Rion Greece
tsirakis@ceid.upatras.gr

Abstract. This paper is focusing on some interesting issues about service
publicity and usability while trying to move from the classic Open Hypermedia
Systems (OHSs) to structural aware environments. Although the step towards
structural computing provides a stable basis for new generation systems, these
systems inherit from OHSs some long-period problems and aspects. Moreover,
new usability problems are rising due to the increment of structural servers’
complexity.

1 Introduction

In today’s computer science community, the dominant trend is towards open systems.
Open hypermedia systems (OHSs) employed a variety of techniques in order to
spread the hypermedia services usability. These systems have tried to add new
hypermedia functionality to the world.

Although open hypermedia systems are characterized by structures and openness
they were usually supporting only navigational approach [5] and were lacking of
supporting towards multiple domains with different structural abstractions. Research
led to structural computing [7] in order to solve some data organization problems.
Structural computing in a way generalizes the techniques used by open hypermedia
[1]. The structural computing idea was the result of the philosophy: “primacy of
structure over data” [10]. In general it contributes to a generalization of the
hypermedia field.

Currently some interesting efforts of moving from OHS to structural aware
systems have been reported [6, 11]. This step has shifted current OHSs drawbacks
from OHS community to the structural computing area. These issues are critical while
aiming to apply structural principles to real world application systems, due to their
involvement in the structural services publicity and usability. Namely, the low
publicity of OHSs, the unsatisfactory level of hypermedia service provision and the
increment of structure service complexity are influencing the adoption of the
structural computing theory into hypermedia systems.

 Assessing the Impacts of Open Hypermedia Problems on Structural Computing 109

This paper presents the critical issues discussed above and suggests some actions
aiming to a stable progress of structural computing research.

2 From Open Hypermedia Systems to Structural Aware
 Environments

The step from open hypermedia theory to structural computing tried to unify
hypermedia domains under a common conceptual foundation. Furthermore, the notion
of the structure awareness was the key point for this approach. Although structural
computing research is in primary level, it still has some notable advantages [10]:

− Interoperability: Different applications can share their objects and their
associations under different structural abstractions.

− Efficiency: Some intelligent operations that systems can support.
− Multiple domains: Provide co-existence of different domains under the same

framework.
− Complexity: As SC has an object-oriented philosophy of computing, some of the

previous problems are now easy-detected and addressed. Since the operations are
implemented in an object oriented way, the complexity of the structural
environments architecture is reduced.

Undoubtedly these advantages signify a promising future for structural computing
but unfortunately there are also some remarkable problems that arise. Most of them
derive both from the existed OHSs’ problems and the structural aware environments’
characteristics. An interesting user-based study about the usability of OHSs [2]
reinforces some of the following issues.

2.1 Publicity

Open Hypermedia Systems have not yet been well-known to public and don’t have a
global usage [8]. There are three underlying categories that agglomerate the reasons
for this:

Research. The Open Hypermedia Researches act in a closed research environment.
Apart from the navigational point of view, other hypermedia fields (ubiquitous,
taxonomic, etc) that have already been analyzed, have not yet reached a satisfactory
level of publicity. Furthermore, it is difficult for new researches to contribute in the
hypermedia research area due to the limited information resources.

Systems’ Promotions. Open Hypermedia Systems are very powerful tools, but their
benefits are not promoted enough to the public. Consequently, in the users and
developers’ area, the OHSs’ products have not been presented successfully. A
developer who wants to add a spatial or a taxonomic representation into his
application does not know where to look for it and how he can use an available
hypermedia service. In most cases he tries to implement custom solutions.

110 N. Karousos and N. Tsirakis

Web Publicity. It seems that (like some current working groups and organizations) a
centralized (web based) information point, which can provide the appropriated
fundamental information to the public, is still missing. Like other existing groups
(World Wide Web Consortium, Internet Engineering Task Force, etc), the Open
Hypermedia Working Group should try to continue (or revise) its work and publish an
up-to-date web site that can inform a visitor about the Open Hypermedia Research.

2.2 Service Provision

Hypermedia services were always trying to reach an open set of potential users in
order to increase the enrichment of the hypermedia functionality to the software
systems. These efforts were not completed appropriately due to absences that derived
from systems architecture, developer supporting, discovering problems and providing
policies. These architectures lack of:

− developer support framework. [3]
− standardized methodologies and protocols for service provision. [4]
− add-hoc service usage implementations and web integration efforts [4].
− service discovery system [3].
− flexible pricing policy [9].
− service oriented hypermedia systems that can provide partial services instead of the

complete hypermedia system [9].

2.3 Complexity Consequences

The architecture of hypermedia services was always complicated. The shift from data
to structure problematizes models of representation [8] and results more complex
structural services. Keeping the same service’s API while both the architecture and
the service kernel are changing is not an easy task. Consequently, although structural
aware environments support multiple domains and make their parallel usage feasible,
the effort for the developer to use only one service seems larger in structural
environments than in classic hypermedia systems.

On the other hand, the interoperability issues among new structural environments
are not fully faced yet.

3 Assuring a Successful Step

There is a general need for some conceptual decisions towards the difficulties that
have been mentioned in the above sections. Specifically we can highlight them in the
following three fields.

Publicity. It’s a common belief that research community looks for a way to improve the
promotion of their results in order to broaden their knowledge and ideas around this
computer science field. As a first step to this direction, a web-based information place
should be created, in order for researchers to be informed about structural computing and
structural aware environments.

 Assessing the Impacts of Open Hypermedia Problems on Structural Computing 111

Service provision. The absence of both developer’s support frameworks and the
standardization of service provision techniques will raise many difficulties in
development procedure, when incorporating structural computing infrastructure.
There is also a necessity to implement a service discovery system and to become an
inherent part of any system with structural computing philosophy. This will contribute
to the widespread of the service provision. Finally, the adoption of service oriented
architectures can boost the usage of structural services from users and developers.

Complexity. Since the research community is still in the progress of establishing an
agenda for building structural computing environments, we ought to work on keeping
clear structural service APIs that are easy to use. Furthermore, we should try to hide
complicated structural operations in the internal of the services.

4 Conclusions

Structural computing is still in its early stages of research and is characterized as a
revolutionary new computing paradigm. The step from the structural computing
principles to the structural aware environments and applications is a very difficult
task. In order this effort to avoid closed theoretical approaches or implementations of
non wide acceptance systems, the drawbacks of open hypermedia systems and the
structural service provision issues have to be faced. The structural computing
community should take into consideration the findings of the OHSs history towards
the efficient creation of the new generation systems.

References

1. Anderson, K. M., Sherba, S. A., Lepthien, W. V. (2003). Structure and behavior awareness
in themis. In Proceedings of the ACM Hypertext 2003 Conference, pp.138-147,
(Nottingham, England).

2. Hicks, David L. (2002). In search of a user base: Where are the B's?. Proceedings of
MetaInformatics 2002, Esbjerg, Denmark, August 8-10, 2002.

3. Karousos, N., Pandis, I. (2003). Developer Support in Open Hypermedia Systems:
Towards a Hypermedia Service Discovery Mechanism. Proceeding of Metainformatics
Symposium (MIS’ 03), (Graz, Austria).

4. Karousos, N., Pandis, I., Siegfried, R., and Tzagarakis, M. (2003). Offering Open
Hypermedia Services to the WWW: A Step-by-Step Approach for the Developers. In
Twelfth International World Wide Web Conference WWW2003, (Budapest, Hungary), pp.
482-489.

5. Michail Vaitis , Manolis Tzagarakis, George Gkotsis (2004). An Engineering Perspective
on Structural Computing-Developing Component-Based Open Hypermedia Systems.
International Workshop on Web Engineering, ACM Hypertext 2004.

6. Millard, D. (2003). Discussions at the Data Border: From Generalised Hypertext to
Structural Computing. Special Issue on Structural Computing, Journal of Network and
Computer Applications, 26, 1, (January):pp. 95-114.

112 N. Karousos and N. Tsirakis

7. Peter. J. Nürnberg, J. J. Leggett, E. R. Schneider (1997). As we should have thought, in:
Proceedings of the 1997 ACM Hypertext Conference, ACM, ACM Press, Southampton,
UK, 1997, pp. 96–101.

8. Peter. J. Nürnberg, Schraefel, M. C. (2003). Relationships Among Structural Computing
and Other Fields. Special Issue on Structural Computing, Journal of Network and
Computer Applications, 26, 1, (January).

9. Shackelford, D. E., Smith J. B., Smith F. D. (1993). The Architecture and Implementation
of a Distributed Hypermedia Storage System. In Proceedings of the 1993 ACM Hypertext
Conference, (Seattle, WA, Nov), ACM press, pp. 1-13.

10. Uffe K. Wiil, Peter J. Nürnberg, David L. Hicks, (2003). Structural Computing - Research
Directions Systems and Issues. Special Issue on Structural Computing, Journal of Network
and Computer Applications, 26, 1, (January), 3-9.

11. Weigang Wang (2003). Co-existence and visualization of multi-domain hypertext
structures. Special Issue on Structural Computing, Journal of Network and Computer
Applications, 26, 1, (January).

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 113 – 128, 2004.
© Springer-Verlag Berlin Heidelberg 2005

Structural Engineering: Processes and Tools for
Developing Component-Based

Open Hypermedia Systems

Michail Vaitis1, Manolis Tzagarakis2, 3, George Gkotsis3,
and Panagiotis Blachogeorgakopoulos3

1 Department of Geography, University of the Aegean, Greece
University Hill, GR-811 00 Mytilene, Greece

2 Research-Academic Computer Technology Institute, Greece
Riga Ferraiou 61, GR-262 21 Patras, Greece

3 Department of Computer Engineering and Informatics, University of Patras, Greece
GR-265 00 Patras, Greece

vaitis@aegean.gr, tzagara@cti.gr,
{gkotsis, blaxogeo}@ceid.upatras.gr

Abstract. The emergence of Component-Based Open Hypermedia Systems
aims at the releasing of Hypermedia and Web applications from the monocracy
of link as the information structuring primitive. Instead, an open set of structure
services, each one providing structure abstractions relevant to a specific do-
main, is offered to an open set of client applications. Nonetheless, the lack of an
engineering framework guiding the development process of CB-OHS has a part
in their limited exploitation. In this paper, we analyze the characteristics of CB-
OHS from an engineering approach, and we propose a framework and a number
of tools, supporting all phases of their development process.

1 Introduction

Many researches during the past decade have pointed out a certain kind of inadequacy
in both Hypermedia and Web applications, concerning the information structuring
abstractions they provide. This “Structure Crisis” mainly originates from the nature
and implementation of the notion of link. In the Web, links are limited in functionality
(they constitute starting-points for unidirectional jumps), embedded into the HTML
file (so characterized as “second-class” entities). In Hypermedia Systems, although
links and anchors are first class entities, they are employed for incarnating all infor-
mation structuring situations. Unfortunately, any closed set of abstractions cannot be
guaranteed to be useful in a practical sense for all possible applications [13]. This
situation raised convenience and efficiency problems, besides lack of standards and
interoperability capabilities.

A significant amount of research and development efforts aiming to overcome the
above issues has resulted in the releasing of the structure abstractions from both data
and core systems’ functionality. Instead, structure abstractions have been promoted to
first class entities, being provided to third-party client applications on demand,

114 M. Vaitis et al.

through specific software components (called structure servers) that form the mid-
dleware part of a tri-tier architecture (figure 1).

Client

Infrastructure

Structure Server

Client

Infrastructure

Structure Server

Fig. 1. Component-Based Open Hypermedia Systems architecture

Component-Based Open Hypermedia Systems (CB-OHS) deliver an open set of
structural abstractions to an open set of client applications, while all fundamental
functionalities (like persistent storage, concurrency and event notification control,
versioning and naming) are provided by the infrastructure backend. The emergence of
CB-OHS as the realization of structure emancipation, has further promote research in
both the analysis of the different ways people use to structure information (called hy-
permedia domains), and the development of systems and tools that assist these struc-
tural activities (belonging to the “B-level” or “C-level” of work1). The new field of
structural computing (SC), asserting the “primacy of structure over data” [13], is aim-
ing to shape the theoretical and practical foundations upon which structure services
will eventually become ubiquitous to all computing environments.

Although CB-OHS and structural computing are among the first forerunners of
nowadays trend for service-oriented computing [17], there is little acceptance of their
potential role in hypermedia and web applications development efforts [14]. We argue
that one of the reasons for this situation is the lack of a predefined software engineer-
ing framework for CB-OHS, coupled with the appropriate tools to support it. The
adoption of ad-hoc development methodologies drives to the production of systems
that lack certain essential characteristics. The development of a structure server is a
complicated task to be repeated from scratch every time a new structure abstraction
has to be supported [25]. In this paper we analyze structure servers from a software
engineering point of view, and propose a development framework involving all as-
pects of their life cycle.

The rest of the paper is organized as follows. In section 2 we present the field of
structural computing and describe the functionality and internal architecture of related
systems. In Section 3 we propose an engineering framework aiming to steer all the
development processes of CB-OHS, while in section 4 we concentrate on the appro-

1 According to Douglas Engelbart [5], there are three types of work that can be performed in an

organization. The A-level is the work of the organization itself. The B-level is work that de-
velops tools to improve the ability of people performing A-level work, while C-level is work
that develops tools to augment the ability of people performing B-level work.

 Structural Engineering: Processes and Tools for Developing CB-OHS 115

priate tools supporting the framework. Section 5 comments a number of existing
structural computing environments, and finally section 6 concludes the paper and pre-
sents future research and development directions.

2 Structural Computing

Hypermedia has been used to support a wide variety of user tasks. These tasks range
from Bush’s association of information to more elaborate activities, such as hyperfic-
tion authoring and reading, information analysis and classification. Each of the tasks
exemplifies how the human mind perceives structure in different problem domains.
The identification of new problem domains is the main concern of hypermedia do-
main research. On the contrary, hypermedia system research is focused on designing
and building the computational foundations to support people working with structure,
concentrating especially on issues regarding openness. The Open Hypermedia move-
ment [16] originated from such an approach. Yet, the conceptual foundations of Open
Hypermedia – the underlying structures and behaviours – have all focused on support-
ing one task: information navigation. As it has been shown [13], the abstractions pro-
vided by systems supporting information navigation cannot address issues in new
domains (such as spatial or taxonomic) in a convenient and efficient way. These do-
mains require structural abstractions markedly different from those used to support
navigational hypermedia, manifesting, thus, a gap between hypermedia domain and
system research. The need for delivering the tailored support required by different
domains gave birth to Component-Based Open Hypermedia Systems (CB-OHS).

CB-OHS are the incarnation of a new approach in solving data organization prob-
lems, called structural computing. Research in structural computing focuses on all
aspects of information structuring problems. Without being biased towards supporting
only navigation among data items, structural computing attempts to provide a frame-
work where a number of different hypermedia domains can co-exist. By providing
such a unifying framework, it aims at narrowing the gap between hypermedia domain
and system research. Structural computing focuses on providing general structure-
oriented models and services that are able to be adapted to domain specific abstrac-
tions easily and efficiently. A ‘hypermedia domain’ is defined by a coherent set of
abstractions that solve a particular data organization problem. CB-OHS are able to
support well known domains, such as navigational, argumentation, spatial, taxonomic
and configuration management, as well as other ‘exotic’ domains, such as workflow,
hyperfiction and linguistics.

The provision of dedicated structure services for each domain, results in a more
convenient and efficient utilization of its abstractions, improving in turn the perform-
ance, quality and cost-effectiveness of client applications. This fact is acknowledged
as a great benefit of CB-OHS, since contemporary systems struggle with the close
coupling of structure models to their infrastructure.

Structural computing systems may be viewed as part of multiple open service sys-
tems, i.e. systems supporting arbitrary middleware services that can be divided into

116 M. Vaitis et al.

infrastructure and application services [25]. Structural computing attempts to change
the way the invisible, but important, infrastructure of contemporary Open Hyperme-
dia Systems work, in providing open structure-based services in heterogeneous envi-
ronments. Thus, structure-based services are considered as components in the context
of service-oriented computing (SOC), where services reuse and composition consti-
tute a fundamental activity for application development [3, 17]. Therefore, structural
computing focuses on the developer’s side, aiming to provide tools and services for
assisting the development of structure servers and client applications.

In figure 2, the conceptual internal architecture of CB-OHS is presented. The vari-
ous entities of both middleware and infrastructure layers are described below, along
with the appropriate protocols and interfaces.

Fig. 2. Conceptual internal architecture of CB-OHS

− Component/Structure server: Reifies the domain specific abstractions, provid-
ing the domain specific services to clients. They are semi-autonomous compo-
nents, since they rely on the infrastructure services for common functionality.
They establish a well-defined interface for communication with client applica-
tions.

− Domain specifications: Comprise specifications about the structure abstractions
of the domain in terms of both structure entities (patterns) and behavior seman-
tics. Behavior models the computational aspects of the domain and can be di-
vided into internal operations used mainly for consistency reasons (e.g. to

 Structural Engineering: Processes and Tools for Developing CB-OHS 117

affirm conditions and constraints or to interpret abstractions in a specific man-
ner), and external operations invoked by clients.

− Services: Implement the domain specific external operations of the domain.
They are available to clients through the use of a specific interface (e.g. open-
Node, traverseLink).

− Infrastructure: Includes the fundamental functionality that is available to all
structure servers. Persistent storage, naming, event notification control and
versioning constitute essential common services. A well-defined protocol is
provided for the communication among structure servers and infrastructure
services.

− Storage: Provides persistent storage services for structures as well as for domain
specifications. The storage protocol manipulates primitive (domain neutral)
structure entities. It is the responsibility of the structure server to transform (or
cast) them to the domain specific structure abstractions. Domain specifications
are managed separately in a repository, in order to support reusability and ex-
tensibility of structure patterns among structure servers.

− Client application: Any third-party program that requests structure functionality
from one or more structure servers. To utilize structure services, clients may be ei-
ther custom-build applications, or extensions to existing applications. In the later
case, either direct extensions are made, or wrapper programs are separately
developed.

The presented internal architecture of CB-OHS implies the necessity of a method-
ology for both structure patterns and behavior semantics specification. Although such
a methodology is still an open research issue in the structural computing community,
the resultant benefits have already been underlined:

• Better understanding of the domain. So far, domain foundations are hard-
coded into systems and services, and are informally described.

• The domain specifications could be the framework of a structure server. It
may be possible to automatically configure a structure server by setting or
modifying structure specifications.

• Exploitation of common structures among different domains, thus enhancing
reusability and interoperability.

• Narrowing the gap between hypermedia domain and system research, by pro-
viding a common framework to express structural abstractions.

As stated above, the transition from early monolithic hypermedia systems to
Open Hypermedia Systems and recently to CB-OHS was directed by the vision to
provide open structure-oriented functionalities to every concerning application, in
a convenient and efficient way. The layered architecture of CB-OHS aims to im-
prove the work of both application engineers and structure server developers, ena-
bling them to utilize high-level abstractions offered by the underneath layer.

118 M. Vaitis et al.

Nonetheless, the lack of an engineering framework guiding the development proc-
ess counteracts most of the anticipations of structural computing.

3 Structural Engineering

Hypermedia and web applications are differentiated from conventional software products
in a number of characteristics, including navigability, provision of search mechanisms,
appropriate content organization, aesthetic and cognitive aspects. As pointed out in [11],
hypermedia applications “uses associative relationships among information contained
within multiple media data for the purpose of facilitating access to, and manipulation of,
the information encapsulated by the data”, while in [4] a Web Hypermedia Application
is defined as “the structuring of an information space in concepts of nodes (chunks of
information), links (relations among nodes), anchors, access structures and the delivery
of this structure over the Web”. The above definitions imply a number of specific activi-
ties during hypermedia development, such as content acquisition and structuring, naviga-
tional and aesthetics design, and multimedia synchronization. The fields of Hypermedia
and Web engineering have emerged, aiming to provide a systematic (scientific and prac-
tical), disciplined, quantifiable approach to the development, operation and maintenance
of hypermedia (or web) applications [11, 7].

The development process of a hypermedia application includes a design phase,
where issues like application architecture, content scope, structure, depth, granularity,
presentation metaphor, viewpoints and access mechanisms are considered [11]. A
number of design models have been proposed in the literature to assist this particular
phase (e.g. HDM [6], RMM [8] and OOHDM [20]). What is common in all the
aforementioned applications, development processes and design models, is the im-
plied support of the navigational domain, resulting in the utilization of constructs like
the node, the anchor and the link. Since structural computing perceives the naviga-
tional domain as just an instance (even the most significant) of an open set of struc-
ture services, hypermedia and web applications has the potential to exemplify custom-
ized structural abstractions according to their needs. Consequently, some modifica-
tions should be carried out in their development process.

We introduce structural engineering as the framework referring to a systematic
and disciplined approach to the development, operation and maintenance of applica-
tions and infrastructures that solve structure-oriented problems. We argue that the
design phase of hypermedia and web applications should follow or comprise a struc-
ture assessment phase. The purpose of this phase is to analyze the structure require-
ments of the application and identify the structure services that have to be used. Dur-
ing the implementation phase the developer should locate the appropriate structure
servers and exploit their protocols. In case the application designer or developer can-
not identify or locate a structure service, there is an opportunity for the establishment
of a new hypermedia domain.

For the definition of a structural engineering framework, we concentrate on the
special characteristics of structure servers, viewed as software components.

 Structural Engineering: Processes and Tools for Developing CB-OHS 119

3.1 Characteristics of Structure Servers

So far, [2] is the only work that has addressed a number of engineering requirements
for structure servers. We extend this list in order to provide a more complete illustra-
tion on the subject.

− Structural completeness: The structure abstractions supported by the structure
server should completely solve the structure-oriented problems of the domain.

− Size: Structure servers are considered small to medium software projects. The main
task is the development of the middleware component, as the infrastructure is al-
ready functional.

− Distribution and Heterogeneity: Structure servers should operate in a distributed
environment composed of different hardware and software platforms.

− Specifications evolution: The decision for the construction of a new structure
server should be taken only when the application needs could not be satisfied by
existing services. This prerequisites a deep study of the application domain, so
there is only a small possibility for the specifications to be changed during the de-
velopment of the structure server. Nevertheless, the usage of CASE tools during
the implementation project minimizes the cost of unexpected requirements
changes.

− Reusability and Extensibility: Structure services at a fine granularity level consti-
tute building blocks that have a great potential to be extended or reused during the
development of other, more complicated ones.

− Life time: The duration of a structure server is long, presuming that the decision for its
development is carefully determined. As the software implementation technologies
continually evolve, structure servers may need to migrate to different platforms from
time to time, while providing a constant interface to third-party applications.

− Robustness, Scalability and Availability: These properties are essential since struc-
ture servers may be used continually by a huge number of applications.

− Introspection capabilities: Structure serves should be able to communicate their
behavior to other applications (i.e., their services interface and descriptions, loca-
tion, and access control details).

− Interoperability: Structure servers that provide functionality for the same hyper-
media domain should be able to interoperate. In addition, a useful requirement is
the existence of supporting mechanisms for the transformation of structures be-
tween different hypermedia domains. In this way, structures may be shared among
structure servers.

3.2 Life Cycle of Structure Servers

Although the size of the structure servers is usually small, there is a need for a disci-
plined development methodology, due to the demanding characteristics that should be
met, as presented in the previous subsection. Based on the conventional software
process phases of Specifications, Development (itemized in analysis, design, coding,

120 M. Vaitis et al.

and integration), Testing, and Evolution/Maintenance [18, 19], we propose the fol-
lowing life cycle for the structure servers (figure 3), while in the following paragraphs
we describe each one of its phases.

The proposed model condenses our experience in developing CB-OHS in the Cal-
limachus environment [21]. It combines notions and features from a number of well-
defined process models (waterfall, prototyping, and fountain), appropriately adapted
to the special characteristics of structure servers. Although we have followed it in our
work with satisfying results, we do not assert that it is the “only” suitable one.
Instead, we propose it as a starting point for the establishment of a structure-oriented
hypermedia and web applications engineering.

Scenario
description

Rapid
Prototyping

Component
Implementation

Integration

Evaluation

Deployment &
Documentation

Structure specification

Syntax Behavior

Structure specification

Syntax Behavior

Maintenance

Fig. 3. CB-OHS life cycle

Scenario Description
We incorporate the scenario-based specification for open hypermedia systems [16],
providing some essential modifications. All functionality proposed to be part of a
given structure server should be justified through one or more scenarios of its use.
That is, when a proposal that some given structure abstraction should be implemented
is arisen, a scenario based on actual or foreseen use should be mapped out. This pol-
icy facilitates discussions among hypermedia application designers and developers, as
to better specify the desired structure functionality and avoid “reinventing the wheel”.
The description of a scenario could include the following paragraphs:

− Goals (name of each goal, plus a description of it),
− Characters (the different kind of users of the service, plus a description for

each one),

 Structural Engineering: Processes and Tools for Developing CB-OHS 121

− Data (some examples of data items that may be associated together with the struc-
ture abstraction),

− Requirements for third-party applications (requests),
− Structure configuration (description and constraints among the structural ele-

ments),
− Behavior description (operations and propagation of them, synchronization among

elements),
− Infrastructure requirements (storage, naming etc.).

Rapid Prototyping
The output of this phase is a prototype structure server that simulates the intended
functionality, while not being fully operational in real. In this way, the evaluation of
the scenario is possible and the developer of the client application has the opportunity
to test the effectiveness and correctness of the desired services. Accrued ambiguities
or misunderstandings are clarified and modifications to the scenario paragraphs are
revealed. This testing and backtracking cycle eventually leads to a complete and cor-
rect scenario specification.

Structure Syntax Specification
In this phase, the structure model of the domain is specified. The purpose of the struc-
ture model is to make concrete the desired structure abstractions and distinguish them
from the data abstractions (where they usually reside in traditional software applica-
tions). In this way, structure is elevated to a first class entity, enabling users, designers
and developers to discuss and reason about it. Such a model should contain the basic
structural elements, their properties and the connection constraints among them and
among data items. In addition, a thorough analysis of already developed components
should be carried out, in order to detect relevant elements that maybe reused. Meth-
odologies that have been used for the specification of structure models include UML
(in the Construct [27] and Themis [1] structural computing environments), XML (in
the Callimachus CB-OHS [21]) or proprietary formalizations (like FOHM [12]).

Structure Behavior Specification
Behavior embodies the computational aspects of a domain and is tightly coupled
with the structure model of it. There are two categories of behavior, depending
on the calling entities: Services, that are available to clients through the server
protocol, and internal operations, that are used by the structure server internally
(e.g. for consistency checking), or when communicating with the infrastructure.
In spite of the word “computing” in its name, the field of structural computing
has no significant research results to present regarding behavior. In most cases,
behavior is considered as an “add-on” that is developed on top of the structure
model. Recently, structure syntax and behavior are considered by many re-
searchers as different views of the same “whole” [23, 15], introducing the possi-
bility of specifying syntax and behavior within the same phase or even in one
step (for example, using UML in Construct [27]).

122 M. Vaitis et al.

Component Implementation
Based on the outcomes of the previous phases, during component implementation the
structure server is being reified. Activities that should be carried out are the imple-
mentation of the structure model and internal operations, the realization of the proto-
col (interface) for communication with the clients, the exploitation of the infrastruc-
ture services, and the eventual reuse, extension or customization of already existing
components. A corner-stone task is the implementation of functions that cast the neu-
tral structural objects stored by the infrastructure, to the specific structure elements
concerning the application domain. In [21] two internal layers are identified in a
structure server: The Abstraction Factory Layer (AFL) which is responsible for
reifying un-typed structural objects to domain specific abstractions, and the Abstrac-
tion Utilization Layer (AUL) where the domain specific abstractions — once created
— may be used by clients requesting structuring functionality.

Integration
Integration is a dispensable task in current structure servers, since they are developed
as embedded services in the development environment and they are tightly-coupled
with it. As we envision the independence of structure services from their development
environments, such a phase is essential. Activities to be carried out include integration
within web servers, binding of port numbers, and arrangement of authoritative and
security issues.

Evaluation
The evaluation activities comprise mainly the ensuring of properties such as function-
ality, performance, compatibility, reliability, and usability.

Deployment and Documentation
The deployment activity turns the structure server in operational mode, so clients may
use its services. A certain prerequisite for that is clients’ ability to discover and locate
the required service. The documentation activity includes both the registration of the
structure server to the dedicated directory services, and the configuration of its intro-
spection capabilities. In [9] a Hypermedia Service Description Language is proposed,
providing a wide range of information that requesting clients can exploit, such as host
and port numbers, interfaces definitions, comments, etc.

Maintenance
As mentioned before, if a careful analysis of the structure abstractions is carried out,
the functional part of a structure server is almost unlikely to evolve. Maintenance is
mainly engaged in corrective, adaptive and perfective tasks, targeting to correct,
complete and efficient structure services.

4 Tools and Services

Tools that facilitate the entire development process of structure servers are still miss-
ing. In the following, we list a number of tools that seem promising in deploying the

 Structural Engineering: Processes and Tools for Developing CB-OHS 123

rich services of CB-OHS and furthermore strengthen the structural computing com-
munity. These tools are classified into two categories: Theoretical tools, aiming at
supporting problem analysis within the structural computing framework, and devel-
opment tools, attempting to assist developers while working with CB-OHS.

4.1 Theoretical Tools

As already mentioned, CB-OHSs are an incarnation of structural computing, which
suggests a specific approach to problems dealing with organization of data. Being a
technology as well as a philosophy and school of thought, structural computing
requires new ways that will help to: (a) Examine its own foundations, and (b) Analyze
real-world organizational problems in a proper manner. These tools are needed pri-
marily by analysts and to a lesser degree by developers. Theoretical tools are required
on two important research fronts, analyzed below:

1. Structural completeness of models and systems: Since structural computing (and
thus CB-OHSs) asserts that it provides a framework able to cover any need for work-
ing with structure, processes are required that will examine to what degree models
may cover or solve structural problems. The coverage of these models determines
their structural completeness.

2. Methodologies for structural analysis and decidability: CB-OHS support domains
in a very abstract way. This means that the abstractions provided by components
solve a family of problems. However, real life organizational problems, do not have
an abstract view, but are very concrete. Currently there are no systematic approaches
to reduce a real life organizational problem to a hypermedia domain; or more con-
cisely, given an organizational problem, how can we determine to which hypermedia
domain it belongs? Consider for example hierarchical security models that support
users and groups, which in turn may consist of other groups. Is such a hierarchical
security model a special case of the taxonomic domain? Does this problem introduce
a new domain? Currently, structural computing cannot answer these questions in a
systematic manner. In order to do so, methods for structural problem analysis need to
be established, methods that can compare models and determine their differences, as
well as methods that are able to decide whether or not a particular organizational
problem belongs to a hypermedia domain or not. An organizational problem is said to
be decidable within a structural computing environment if there exists an effective
and systematic procedure (i.e. comprised of finite steps) that solves the problem
within the structural computing framework. All those theoretic procedures determine
the property of structural decidability of a system.

4.2 Development Tools

Besides the theoretical tools needed by analysts when working within a structural
computing environment, actual development tools are needed by developers that will
help them taking full advantage of the provided services of CB-OHS. They deal with
every aspect of CB-OHS, involving model and system issues.

124 M. Vaitis et al.

1. Tools for structure syntax definition and configuration. The development of com-
ponents would be substantially easier if a specification formalism is available.
Such formalism should be open to extensions, model-neutral and provide a common
ground for cooperation. Although initial attempts of such formalisms exist (e.g. [1],
[27], [21]), they do not cover all domain specific aspects and have not been exces-
sively de-ployed in order to see their shortcomings.

2. Tools for structure behaviour specification. While tools for structure syntax con-
figuration are aiming primarily to syntactical aspects of structure, tools for structure
behaviour specification are aiming to dynamic and computational aspects. Based on
the structure model definition, tools for behaviour specification would allow control-
ling the life-span of structural abstractions, how structural abstractions interact and
how they react to messages.

3. Tools for discovering components in CB-OHS. The plethora of potential compo-
nents provided by CB-OHS raises issues not only relevant to components usage [10],
but also to their location searching and their status and availability interrogation.
While naming services can solve the problem of locating structure servers [22], this is
possible only if their names are known. When names of structure servers are un-
known, locating them in contemporary CB-OHS is rather impossible. The later char-
acterizes the situation of developers that get in touch with CB-OHS for the first time.
In such cases, they do not know what kind of structure servers exists, and more im-
portant, how they may deploy them. The act of attempting to locate available structure
servers without prior knowledge of their existence or their name is referred to as dis-
covering of structure servers/components. The tools of this category can take the form
of browsers that examine the available structure servers within a CB-OHS and report
on their properties, or the form of APIs that allow the integration of discovery mecha-
nisms into third-party applications. Irrespective of the form these tools may take, spe-
cial protocols are needed to facilitate the discovery of structure servers. By the term
“properties of a structure server”, we denote all these characteristics that distinguish
one structure server from the other. These include: the name of the domain a structure
server is servicing, the protocol the structure server is using to receive requests and in
general to communicate, its availability, etc. Maintaining these characteristics within
a special repository at the infrastructure, and selecting an appropriate representation
mechanism, would also ease the development of CB-OHS clients (as well as the inte-
gration of third-party applications), since client-side code could be generated auto-
matically. For example, using WebServices and in particular WSDL to represent the
provided services, would allow the automatic generation of client-side protocol stubs.
Going with these thoughts even further, this approach would also allow the runtime
binding of protocol classes into clients, as it is the case on the World Wide Web.

5 Related Work

The questions of how to support development tasks in structural computing have
already been the concern of contemporary CB-OHS. In this section a number of

 Structural Engineering: Processes and Tools for Developing CB-OHS 125

existing structural computing environments are briefly presented, emphasizing on
their supported development tools.

The Themis structural computing environment [1] consists of a framework inter-
face, a generic structure server and two extension subsystems for the definition of
structure templates and structure transformations, respectively. Application develop-
ers can extent the generic structure server by defining templates for the needed do-
main-specific structures. The template subsystem provides also instantiation opera-
tions for structures, which can be manipulated through the framework interface. The
primary structure abstraction is the Element abstract class, associated with an open set
of attribute-value pairs. The value of an attribute may be another element instant.
Element instances belong to either of two subclasses, Atom and Collection, where the
second subclass aims to group together other elements. These simple conceptual con-
structs can be combined to support a variety of domain-specific structures, both tree-
based and non-hierarchical. The transformations subsystem provides supporting op-
erations that automatically transform structure instances from one template to another.
This functionality is delivered through custom-developed plug-in’s that are loaded on
demand into the transformation subsystem. Themis utilization in real application de-
velopment projects has resulted in reducing the amount of code required, along with
raising the level of abstraction, such that it is easier to understand and maintained.

The Construct structural computing environment [25, 27] is designed to support
the development and hosting of an open set of structure and infrastructure services.
The development process consists of using a UML tool to specify the classes (in
terms of both state and behaviour) that make up a new hypermedia service. The de-
rived diagram is automatically transformed to an IDL specification, which in turn
delivered to the Construct Service Compiler (CSC). CSC produces a set of files, in-
cluding an XML DTD, a skeleton service, and a set of common service behaviours.
The skeleton service consists of a set of classes specifying a set of methods having
their bodies (semantic parts) empty. The developer has to fill the missing code and
load the service to the Construct environment. Generated services are available not
only to third-party clients, but also to the development environment itself. The current
set of services includes navigational, metadata, taxonomic, spatial, cooperation, and
data mining services, while some of them are also provided on the web [24].

The Callimachus CB-OHS [21] provides the framework in which various hyper-
media domains can co-exist. Motivated by the complexity of designing and imple-
menting structure servers, it supports a methodology and a number of tools to facili-
tate these tasks. A formal XML-based syntax for the definition of domain-specific
structure abstractions and their interrelationships is offered, setting up structure tem-
plates. Structure types are the building blocks for templates, while each structure type
is composed of a unique id, a name, and an arbitrary number of properties and end-
sets. Instantiation of structure types produces structure objects, comprising the basic
first-class entities manipulated by the system. Properties take one or more values of a
specific data type, while endsets are placeholders for structure objects’ ids. A set of
core operations has been implemented, enabling the creation, modification, deletion,
loading, saving and querying of structure objects. The methodology of developing
structure server within Callimachus is divided into two phases: the structural design

126 M. Vaitis et al.

phase and the behavioural design phase. During the former phase, the developer de-
fines the structure template, while during the later he/she employs the set of core op-
erations in order to build the computational aspects of the domain.

As it is evident, contemporary CB-OHS have already attempted to approach and
solve development issues within their systems. Nevertheless, the approaches of
current CB-OHS focus only on specific tasks e.g. formal structure specification,
building structure servers � without providing an integrated and complete devel-
opment environment.

6 Conclusions – Future Work

In this paper we attempt to approach structural computing systems from a software
engineering point of view, motivated by their little acceptance by the development
community. We believe that this is partly due to the lack of an engineering framework
and a set of development tools, which make the use of CB-OHS cumbersome and
difficult. Without proper development tools, developers hesitate to incorporate CB-
OHS into their tasks. We argue that development issues should be explicitly ad-
dressed within CB-OHS and reflected by the infrastructure.

Based on well established software engineering practices and on the experience
gained from previous works, we present a development process model, centralized to
emphasize critical characteristics of CB-OHS, rather than exploiting specific tech-
nologies. Towards establishing proper development tools, we have identified some
areas where such tools are mostly needed, including the theoretical as well as the
practical aspects of structural computing. With regard to the theoretical aspects, new
tools to analyze problems and evaluate the conceptual structure models are required,
based on the notion of structural completeness and decidability. Regarding practical
aspects, environments are needed that are able to manipulate domain specifications,
including both structure syntax and behavior. Moreover, given the polymorphic na-
ture of CB-OHS with respect to supported domains, contemporary approaches in lo-
cating structure servers seem inappropriate. New methods of discovering appropriate
structure servers are necessary, directed to provide a sound foundation to enable Peer-
to-Peer hypermedia.

Our current and future research plans are mainly focused on the design and imple-
mentation of the aforementioned development tools. Especially, we are working on
the subject of behavior specification and the establishment of a framework for the
propagation of operations through structure entities [23]. We believe that formal
methods for the definition of structure semantics are a prerequisite to address the
structural completeness and decidability issues.

References

1. Anderson, K. M., Sherba, S. A., Lepthien, W. V.: Structural Templates and Transforma-
tions: The Themis Structural Computing Environment. Journal of Network and Computer
Applications, 26(1), (2003) 47–71.

 Structural Engineering: Processes and Tools for Developing CB-OHS 127

2. Anderson, K. M.: Software Engineering Requirements for Structural Computing. In: Pro-
ceedings of the 1st Int’l Workshop on Structural Computing (SC1, Darmstadt, Germany),
Technical Report AUE-CS-99-04, Aalborg University Esbjerg, Computer Science De-
partment, Denmark (1999) 22�26.

3. Beringer, D., Melloul, L., Wiederhold, G.: A Reuse and Composition Protocol for Ser-
vices. In: Proceedings of Symposium on Software Reusability (SSR’99, Los Angeles,
California, USA), (1999) 54�61.

4. Christodoulou, S., Zafiris, P., Papatheodorou, T. S.: Web Engineering: The Developers'
View and a Practitioner's Approach. Web Engineering, Software Engineering and Web
Application Development, Springer-Verlag LNCS 2016 (2001) 170-187.

5. Engelbart, D.: Keynote speech. 4th Int’l Workshop on Open Hypermedia Systems (OHS4,
Pittsburg, PA, USA), (1998).

6. Garzotto, F., Paolini, P., Schwabe, D.: HDM – A Model-Based Approach to Hypertext
Application Design. ACM Transactions on Information Systems, 11(1), (1993) 1–26.

7. Ginige, A., Murugesan, S.: Web Engineering: An Introduction. IEEE MultiMedia, 8(1),
(2001) 14-18.

8. Isakowitz, T., Stohr, E. A., Balasubramanian, P.: RMM: A Methodology for Structured
Hypermedia Design. Communications of the ACM, 38(8), (1995) 34–44.

9. Karousos, N., Pandis, I.: Developer Support in Open Hypermedia Systems: Towards a
Hypermedia Service Discovery Mechanism. In: Proceedings of the 2nd Int’l Metainformat-
ics Symposium (MIS’03, Graz, Austria), Springer-Verlag LNCS 2994 (2004) 89–99.

10. Karousos, N., Pandis, I., Reich, S., Tzagarakis, M.: Offering Open Hypermedia Services to
the WWW: A Step-by-Step Approach for Developers. In: Proceedings of 12th Int’l World
Wide Web Conference (WWW 2003, Budapest, Hungary), (2003) 482�489.

11. Lowe, D., Hall, W.: Hypermedia and the Web: An Engineering Approach. Wiley (1999).
12. Millard, D. E., Moreau, L., Davis, H. C., Reich, S.: FOHM: A Fundamental Open Hyper-

text Model for Investigat-ing Interoperability between Hypertext Domains. In: Proceed-

ings of 11
th

ACM Int’l Conference on Hypertext and Hypermedia (Hypertext ’00, San An-
tonio, Texas, USA), (2000) 93–102.

13. Nürnberg, P. J., Leggett, J. J.: A Vision for Open Hypermedia Systems. Journal of Digital
Information, Special issue on Open Hypermedia Systems, 1(2), (1997).

14. Nürnberg, P. J., Schraefel, M. C.: Relationships among Structural Computing and Other
Fields. Journal of Network and Computer Applications, 26(1), (2003) 11�26.

15. Nürnberg, P., Wiil, U. K., Hicks, D. L.: A Grand Unified Theory for Structural Comput-
ing. In: Proceedings of the 2nd Int’l Metainformatics Symposium (MIS’03, Graz, Austria),
Springer-Verlag LNCS 2994 (2004) 1–16.

16. Open Hypermedia Systems Working Group (OHSWG). http://www.csdl.tamu.edu/ohs/
17. Papazoglou, M. P., Georgakopoulos, D. (eds.): Service-oriented Computing. Communica-

tions of the ACM, 46(10), (2003).
18. Pfleeger, S. L.: Software Engineering: Theory and Practice. Prentice Hall (2001).
19. Pressman, R. S.: Software Engineering - A Practitioner's Approach. McGraw – Hill.

Fourth Edition (1997).
20. Schwabe, D., Rossi, G., Barbosa, S. D. J.: Systematic Hypermedia Application Design

with OOHDM. In: Proceedings of 7th ACM Int’l Conference on Hypertext (Hypertext ’96,
Bethesda, Maryland, USA), (1996) 116–128.

21. Tzagarakis, M., Avramidis, D., Kyriakopoulou, M., Schraefel, M., Vaitis, M., Christodou-
lakis, D.: Structuring Primitives in the Callimachus Component-Based Open Hypermedia
System. Journal of Network and Computer Applications, 26(1), (2003) 139�162.

128 M. Vaitis et al.

22. Tzagarakis, M., Karousos, N., Christodoulakis, D., Reich, S.: Naming as a Fundamental

Concept of Open Hyper-media Systems. In: Proceedings of 11
th

ACM Int’l Conference on
Hypertext and Hypermedia (Hypertext ’00, San Antonio, Texas, USA), (2000) 103– 112.

23. Vaitis, M., Tzagarakis, M., Grivas, K., Chrysochoos, E.: Some Notes on Behavior in
Structural Computing. In: Proceedings of the 2nd Int’l Metainformatics Symposium
(MIS’03, Graz, Austria), Springer-Verlag LNCS 2994 (2004) 143�149.

24. Wiil, U. K., Hicks, D. L.: Providing Structural Computing Services on the World Wide

Web. In: Proceedings of the 3
rd

Int’l Workshop on Structural Computing (SC3, Aarhus,
Denmark), Springer Verlag LNCS 2266 (2002) 160–171.

25. Wiil, U. K., Nürnberg, P. J., Hicks, D. L., Reich, S.: A Development Environment for
Building Component-Based Open Hypermedia Systems. In: Proceedings of 11th ACM
Int’1 Conference on Hypertext and Hypermedia (Hypertext ’00, San Antonio, Texas,
USA), (2000) 266 – 267.

26. Wiil, U. K.: Multiple Open Services in a Structural Computing Environment. In: Proceed-
ings of the 1st Int’l Workshop on Structural Computing (SC1, Darmstadt, Germany),
Technical Report AUE-CS-99-04, Aalborg University Esbjerg, Computer Science De-
partment, Denmark (1999) 34�39.

27. Wiil, U. K.: Using the Construct Development Environment to Generate a File-Based Hy-
permedia Storage Service. In: Proceedings of the 2nd Int’l Workshop on Structural Com-
puting (SC2, San Antonio, Texas, USA), Springer Verlag LNCS 1903 (2000) 147�159.

A Semantic Representation
for Domain-Specific Patterns

Susana Montero, Paloma Díaz, and Ignacio Aedo

Laboratorio DEI. Dpto. de Informática,
Universidad Carlos III de Madrid,

Avda. de la Universidad 30. 28911 Leganés, Spain
{smontero, pdp}@inf.uc3m.es, aedo@ia.uc3m.es

http://www.dei.inf.uc3m.es

Abstract. Design patterns are a valuable mechanism to capture and disseminate
best practice in software design. The oft-cited definition of an Alexandrian pat-
tern, ′′a solution to a problem in a context”, stimulates the definition of pat-
terns from knowledge and expertise in any domain. Indeed, their application
has spread from the object-oriented community, who first adopted them, through
different software areas including human-computer interaction, virtual environ-
ments, ubiquitous computing, hypermedia and web engineering. This kind of pat-
terns that describe successful solutions to recurring design problems in terms of
a specific domain of application are known as domain-specific patterns.

The increasing number of available design patterns is making difficult to find
the most appropriate one given a specific problem since this task requires mas-
tery on existing design patterns. Hence, there is a need to introduce a formalism
to describe them accurately and to allow a rigorous reasoning process to assist
users to retrieve those patterns that solve their problems. With this purpose, we
propose a semantic representation for domain-specific patterns based on the do-
main knowledge for which they were written and for which an ontology-based
approach is applied. This representation is used as an underlying armature for
complementing the informal textual pattern description by means of semantic an-
notations. The combination of the literary pattern representation with its formal
representation counterpart could assist an intelligent search engine that supports
users not just for retrieval purposes but also for the discovery useful design solu-
tions improving, therefore, their ability to develop quality software.

1 Introduction and Motivation

In 1977, the architect Christopher Alexander and his colleagues introduced the pat-
tern metaphor as a mechanism to capture the essence of successful solutions to re-
curring design problems in urban architecture [2]. Patterns are generally intended for
human/manual use as they are structured but informal documents made up of a series
of fields, including the problem that the pattern addresses, the context in which it is
used, and the suggested solution written in natural language. This idea of capturing
knowledge into patterns was adopted by the object-oriented community as an effective
mean for reusing best practice in software design [10]. Moreover, their continued usage

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 129–140, 2004.
c©Springer-Verlag Berlin Heidelberg 2005

130 S. Montero, P. Díaz, and I. Aedo

among designers and developers has turn the names of patterns into a shared vocabulary
for expressing and communicating knowledge.

The oft-cited definition of an Alexandrian pattern, ′′a solution to a problem in a con-
text”, is so general that allows patterns to be formed from knowledge and expertise in any
domain. This quality together with the aforementioned benefits have spread the adoption
of patterns to other fields, whether or not software-related. Some of these fields related to
the software area include human computer interaction [5], security [1] and hypermedia
[18]. All these kinds of patterns are embraced in a broader term denominated Domain-
Specific Pattern and it is this category that strongly motivates our work.

In recent years, the number of domain-specific patterns has increased drastically.
For this reason, repositories, tools and methods for searching and selecting a partic-
ular pattern in an intelligent way are required to improve the ability of developers to
produce high quality software reusing good design solutions. Current approaches to
represent patterns are document-based, at best supported with hypertext tools on the
Web, meaning that effective use is difficult. For a designer or a domain expert, finding
suitable patterns for a particular purpose is increasingly problematic. They need to be
aware of existing patterns and to understand when they should be applied.

In this paper, we propose a semantic representation for domain specific patterns
based on the domain knowledge for which they were written. For that purpose, both the
pattern format and the domain are reflected separately in a representational vocabulary
using an ontology-based approach. Subsequently, this representation is used as an un-
derlying armature for complementing the informal textual representation of patterns by
means of semantic annotations. The combination of both makes patterns mutually un-
derstandable to stakeholders and machines. Finally, this general model is applicable to
domain-specific patterns whether or not software-related, providing the semantic foun-
dation on which to build standardised patterns collected in repositories and to develop
tools for intelligent reasoning. This kind of efforts comprise what Engelbart identified
as B-level activities [8], that are those oriented towards reducing the product-cycle time,
that is, towards improving the ability to perform our core activity. The approach pre-
sented here is intended to facilitate software reuse and, thus, to improve our ability to
develop quality software by reusing tested knowledge and expertise. As the specific do-
main area used to illustrate this approach is the hypermedia arena, this work is expected
to constitute one contribution to the B’s David L. Hicks was looking for in [15].

This paper is structureed as follows: Section 2 briefly introduces the concept of Do-
main Specific Pattern and provides some examples of these patterns. Section 3 presents
related work on the formal specification of patterns. Section 4 describes our model
for the representation of domain-specific patterns from their semantics, its underlying
rationale as well as their formal components. Section 5 subsequently illustrates our ap-
proach with a case study and section 6 finally presents some conclusions and the future
directions of our research shall take.

2 Domain-Specific Patterns

Design patterns have proven that they are a natural way for the formulation of accu-
mulated expertise. It all began in the field of building architecture. The software en-

A Semantic Representation for Domain-Specific Patterns 131

gineering community enthusiastically embraced the patterns concept and their field of
application has been extremely broadened. We can find patterns in other software areas
such as hypermedia, security, user interfaces, real-time systems or even in knowledge
areas such as communication, economy or education. As a consequence, large knowl-
edge repositories of domain-specific patterns are being created. To illustrate this situa-
tion, we present some software domains that have an important literature together with
an example of pattern.

– Human-computer interaction. These patterns are focused on solutions to problems
that end-users have when they interact with systems, being the usability the essen-
tial design quality. Interaction design patterns collections are publicly available in
books [5] or online [21] with a total count of more than 250 published patterns.
For example, the Progress pattern should be used when the user wants to know
whether or not the operation is still being performed as well as how much longer
the user will need to wait. This pattern proposes that the application provides a
valid indication of progress while it is still working [21].

– Security. A security pattern is a well-understood solution to a recurring information
security problem the aim of which is to allow developers to make informed trade-
off decisions between security and other goals. These patterns include different
aspects of security such as security models, application security or cryptography
[1]. Moreover, the pattern template [10] has been altered to convey more security-
relevant information [16]. An example of security pattern is the Check Point pattern
which proposes a structure that checks incoming requests, and in case of violations,
the Check Point is responsible for taking appropriate countermeasures [16].

– Hypermedia. Hypermedia patterns are commonly used in any type of hypermedia
design, including web applications, to deal with the different aspects of conceptual
design (interface, content structure, navigation, dynamics, interaction). The first
hypermedia patterns were presented by Rossi [18], and many more have since been
published [12]. As example of hypermedia pattern, the Index Navigation pattern
provides fast access to a group of nodes, adding a node which contains an entry
point for each node of the group and vice versa [11].

Next section discusses existing representations of patterns and their suitability for
capturing the knowledge domain of these patterns and the automatic support for organ-
isation, retrieval and provision of explanations.

3 Related Work

Design patterns usually are expressed in natural language, through a specific structure.
Although, there are different formats [17], they usually contain certain essential ele-
ments that describe the context in which the problem occurs, the intent and statement
of the problem, a description of the relevant forces that justify why the pattern and
implementations should be used and how to generate the solution. Although this rep-
resentation is the most suitable to understand the rationale behind a pattern, there is a
limitation to precision due to the use of natural language and the semantic ambiguity.

132 S. Montero, P. Díaz, and I. Aedo

This feature does not allow any level of automation to resolve problems widely recog-
nised such as finding and selecting the appropriate patterns or applying them.

In order to resolve these problems there have been several attempts to provide de-
sign patterns with certain formalism in the object oriented community, but not in other
domains. For example, the Cornils and Hedin [6] model design patterns using reference
attributed grammars with syntactic and context-sensitive rules. Eden et al. [7] define
LePlus (LanguagE for Patterns Uniform Specification) from Higher-Order logic to rep-
resent design patterns as logic formulas which consist of participants (i.e. classes, func-
tions or hierarchies) and relations imposed amongst them. Smith and Stotts [19] use an
extension of sigma calculus which defines relationships between the elements of ob-
ject oriented language to express design patterns. Finally, Taibi and Ling Ngo [20] are
concerned with specifying both the structural and behavioural aspect of design patterns
using first order logic for the former and temporal logic for the later. This approach
describes patterns in terms of entities (classes, attributes, methods, objects and untyped
values) and relations that express the way entities collaborate.

The main advantage of these approaches is their rigourous reasoning since they are
based on formal specification languages. However, this advantage can turn into a strong
disadvantage if the user cannot easily understand how patterns have been specified or
how to specify new patterns. Most of the reported approaches adopt a well-defined
mathematical semantics to describe the object-oriented domain that it is not readable
by people from outside the software engineering profession and lacking mathematical
skills. In the case of domain specific patterns, they are used by both domain experts and
novices whose knowledge is focused solely on the application domain. Moreover, most
of domain-specific patterns not described in terms of classes, objects, etc., but in terms
of components of the application domain, so the aforementioned approaches can not be
applied directly.

Finally, they reflect only the pattern solution, but a pattern is much more than this.
Besides teaching the rationale behind the solution and its trade-offs [3], a pattern cap-
tures how and when to apply the solution. All of these elements are needed for the
development of support tools for organisation, retrieval and provision of explanations.
For example, including the intent section of a pattern description in the formalisation
would allow for indexing of patterns according to the problem that resolve, helping
users find the correct pattern for a design problem.

A formalisation of a pattern description cannot replace the understandability of the
natural language description but can be thought of as a complement.

4 An Ontology-Based Approach

As aforementioned, the objective of our approach is to provide an underlying formalism
that complements the textual description of the domain specific patterns based on the
same terms experts use to describe their domain knowledge. To achieve this aim, our
approach is based on the use of ontologies. Ontologies have as main motivation help
programs and humans share and reuse knowledge bodies [14] providing the following
benefits to our solution:

A Semantic Representation for Domain-Specific Patterns 133

– Well-defined semantics. Patterns are described in textual form which can be am-
biguous and sometime misleading in their understanding and application. This ap-
proach provides a formalism that allow us to know precisely what we mean when
we use domain-specific terms and concepts.

– Rigourous reasoning. Patterns to be understood by machines need a formalism
that supports reasoning. Ontologies can provide reasoning service over information
expressed since ontology specification languages are usually based on a particular
kind of formal logic [13].

– Browsing/Searching. Due to the large amount of patterns there is a need for tools
to make patterns accessible in more than one way. Our approach can assist an in-
telligent search engine that supports users not just for retrieval but for discovery.
These tools can generate different views or offer dedicated search functionality to
select appropriate patterns.

– Interoperability. Different repositories that hold patterns formalised with different
ontologies should coexist. Ontologies enable the integration of information from
diverse resources, allowing different ontologies to model the same concepts of the
application domain in different ways.

4.1 A Representation Framework

Our approach is based on three types of ontologies that supply the basic structure or
armature around which domain-specific patterns can be built, as shown in Figure 1.

Fig. 1. Import relations between the ontologies for domain specific patterns using the UML
package notation

– The pattern components. This ontology gathers the elements that are part of the pat-
tern template, but independent of any particular domain. Patterns, in general, follow
a format to describe a proven solution to a recurring design problem [2]. Depend-
ing on the level of detail of each domain more specific components to describe its
patterns including diagrams, examples of use or pointers to related patterns can be
added here [17].

134 S. Montero, P. Díaz, and I. Aedo

– The domain knowledge. This domain ontology describes the vocabulary and back-
ground knowledge of the domain of application. Examples of this ontology can
be the core knowledge needed to describe human computer interaction, security or
hypermedia patterns.

– The domain specific pattern. This ontology imports the above ontologies to define
an explicit mapping between them. This allows us to keep the pattern template
and the domain specific knowledge separate since each domain depending on its
needs uses more or less fields to describe its patterns and the later ontology changes
according to the domain knowledge that the pattern captures.

Each of these ontologies specifies the representational vocabulary in the correspond-
ing domain, with agreed-on definitions of the terms in declarative form. Definitions may
include axioms, constraints, relationships among concepts, and hierarchies of the prob-
lem domain. Once the domain specific pattern ontology is specified, it acts as a seman-
tic backbone for making semantic annotations to the textual pattern description. This
framework can be instantiated in different domains for modelling their domain-specific
patterns.

4.2 AnnotPat: An Ontology-Based Pattern Annotation Tool

Semantic annotation deals with assigning links to the semantic description of raw data
in order to produce data that are machine-processable. Semantic annotation is appli-
cable to any sort of text, audio, video, and currently to web pages in order to build
the semantic web [4]. In this context, semantic annotation is formalised from two sets
of objects, documents and formal representations and two functions can be created:
a function from document to formal representations, called annotation and a function
from formal representations to documents called index [9]. The work presented here is
related to the first function.

As mentioned previously, we aim to enrich the textual pattern description to enable
the development of tools for the automatic organisation, retrieval and explanation of
domain-specific pattern collections.

The overall approach is depicted in Figure 2. Domain-specific patterns are annotated
by domain experts or novices using an annotation tool called AnnotPat. AnnotPat pro-
vides the facility to annotate a textual pattern description with its appropriate semantic
terms. Thus, a formalised pattern can be extracted and stored together with its textual
representation, suitable for further processing. From the knowledge base and a infer-
ence engine different tools can be developed, such as a query tool to search and retrieve
suitable patterns in terms of the ontology, a web community portal through which pat-
tern knowledge can be gathered, stored, secured and accessed by members, or support
tools that interact with other systems, to help users select and apply patterns according
to the application context.

With regard to the AnnotPat tool, it reads an OWL file containing a domain-specific
pattern ontology specification. OWL 1 is the W3C recommended language to describe

1 http://www.w3.org/2004/OWL/

A Semantic Representation for Domain-Specific Patterns 135

Fig. 2. The approach overview

Fig. 3. Snapshot of the annotation interface. The user has highlighted a piece of text to make an
annotation

136 S. Montero, P. Díaz, and I. Aedo

ontologies. From this specification, the tool generates a user interface for patterns an-
notation. Figure 3 shows a snapshot of the annotation interface which is divided into
two sides. The left side shows the status of annotations made by the user as a domain-
specific pattern ontology instance. The right side shows the template pattern where the
textual descriptions are typed and annotations are made. After typing the pattern, the
user can make annotations in order to link words with terms. For that, she first needs to
highlight a relevant piece of text and does click with the right mouse button. A pop-up
menu is displayed with the possible terms according to the pattern element selected, for
easier use.

In the next section, we put the high-level rationale outlined above into a concrete
perspective, hypermedia design patterns.

5 A Study Case: Hypermedia Patterns

Before making any annotation on hypermedia patterns, we need to define the domain
ontology from which these patterns capture the domain solutions. Hypermedia patterns
are described by a number of terms and concepts that describe the general features of
hypermedia applications. Taking into account only the elements related to their struc-
ture, all hypermedia applications can be described in a simple way from the following
terms:

Fig. 4. Snapshot of the Protégé ontology editor v. 2.1.2 showing part of the domain-specific pat-
tern ontology

A Semantic Representation for Domain-Specific Patterns 137

Fig. 5. The Index Navigation pattern in RDF format

– Node is an information holder able to contain a number of contents. Examples of
nodes are a web page, a frame or a pop-up window.

– Content is a piece of information of any type like text, audio, graphics, animations
or programs.

– Link is a connection among two or more nodes or contents. A link is defined be-
tween two set of anchors.

– Anchor is the source or target of a link, and determines a reference locus into a
node and/or content.

Secondly, the template of the domain specific pattern is defined by means of the
mapping between the hypermedia domain ontology and the fields needed to describe
the domain specific patterns giving the Hypermedia Design Pattern ontology as a result.
We specified all ontologies in OWL using the Protégé 2 ontology editor and its OWL
plug-in. This editor allows users to build ontologies in a frame-like way by means of
classes, properties and axioms.

2 http://protege.stanford.edu/

138 S. Montero, P. Díaz, and I. Aedo

Finally, we can use the AnnotPat tool in order to annotate a pattern with the final
domain specific pattern ontology. To demonstrate this process, we used the Index Navi-
gation pattern explained in the section 2.

From the typed text of this pattern, the following annotations are made. The name
is IndexNavigation and the pattern is related to another pattern called Hybrid Collec-
tion [11]. The element Category describes the level of abstraction and design aspect
which suggest when a pattern could be used. For this example, the pattern is considered
conceptual since no detail about the solution implementation is provided and it belongs
to the navigational category since its aim is to organise the navigation through the hy-
permedia application. The element Problem describes the scenario in which the pattern
is applied by means of aim, which uses keywords to identify the reason why the pattern
should be used, and state, which defines what hypermedia elements participate in the
problem scenario. In the case of this pattern, its aim is to provide fast access to nodes.
Finally, the element Solution describes how to obtain the desired outcome by means
of state which defines what hypermedia elements participate in the solution scenario.
As the solution of this pattern is to add a new node that contains entry points for each
node, the actors that participate in the solution state are: the nodes of the problem state,
the new node that represents an index, and the links between the two types of nodes.

The result of the annotation process is showed in Figure 3 where the highlighted text
means the annotated words. Figure 5 shows the Index Navigation pattern formalised as
an instance of the domain specific pattern ontology in RDF 3 format ready to be shared
by repositories and processed by reasoning tools.

6 Conclusions and Future Work

In this paper, we presented an ontology-based approach that allows designers and domain
experts to enrich their domain-specific patterns with semantic annotations using their
domain concepts and terms. The representation framework keeps the pattern template
and the domain specific knowledge separate since each domain depending on its needs
uses more or less fields to describe its patterns and the later ontology changes according
to the domain knowledge that the pattern captures. This feature allow the framework to be
applicable to any domain providing the formal foundation to build standardised patterns
collected in repositories and intelligent tools for their automatic organisation, retrieval
and discovery.

The most valuable contribution of this approach is to be both human and machine
readable, since the text pattern description is linked to its formal representation, pro-
tecting the essence of design patterns: express and communicate successful solutions
to common problems between practitioners. In this way, patterns become more easy
to reuse and, therefore, the developer’s ability to produce quality software can be im-
proved. In a general sense, this work address a B-level activity within the Engelbart’s
ABC of improvement infrastructure [8] that is aimed at helping software developers to
enhance their core activity.

Finally, we are working on enhancing the AnnotPat tool and provide personal and
shared spaces such as web repositories or communities.

3 The W3C recommendation for representing metadata, http://www.w3.org/RDF/

A Semantic Representation for Domain-Specific Patterns 139

Acknowledgements

Thanks to Damaris Fuentes, who implemented the AnnotPat tool prototype. The au-
thors also wish to acknowledge the constructive suggestions provided by the reviewers
and the research assistants. Finally, this work is supported by Dirección General de In-
vestigación de la Comunidad Autónoma de Madrid and Fondo Social Europeo (CAM
and FSE) (07T/0024/2003 1).

References

1. Security Engineering With Patterns: Origins, Theoretical Models, and New Applications.
Springer-Verlag, 2003.

2. C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel. A
Pattern Language: Towns, Buildings, Construction. Oxford University Press, New York,
1977.

3. B. Appleton. Patterns and software: Essential concepts and terminology, 2003.
4. T. Berners-Lee. Semantic web road map. w3c design issues.
5. J. O. Borchers. A Pattern Approach to Interaction Design. John Wiley & Sons, 2001.
6. A. Cornils and G. Hedin. Tool support for design patterns based on reference attribute gram-

mars. In Proc. of WAGA’00, Ponte de Lima, Portugal, 2000.
7. A. H. Eden, A. Yehudai, and J. Gil. Precise specification and automatic application of design

patterns. In Proc. of International Conference on Automated Software Engineering (ASE
’97), pages 143–152, Lake Tahoe, CA, USA, 1997.

8. Douglas C. Engelbart. Augmenting Human Intellect: A Conceptual Framework. Technical
report, Air Force Office of Scientific Research, 1962.

9. J. Euzenat. Eight questions about semantic web annotations. IEEE INTELLIGENT SYS-
TEMS, 17(2):55–62, 2002.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

11. F. Garzotto, P. Paolini, D. Bolchini, and S. Valenti. Modeling-by-Patterns of web applica-
tions. In Advances in Conceptual Modeling: ER ’99 Workshops on Evolution and Change in
Data Management, Reverse Engineering in Information Systems, and the World Wide Web
and Conceptual Modeling, pages 293–306, 1999.

12. D. German and D. Cowan. Towards a unified catalog of hypermedia design patterns. In
Proceedings of 33rd Hawaii International Conference on System Sciences, Maui, Hawaii,
2000.

13. A. Gómez-Pérez and O. Corcho. Ontology specification languages for the semantic web.
IEEE Intelligent Systems, 17(1):54–60, 2002.

14. T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition,
5(2):199–220, 1993.

15. D.L. Hicks. In search of a user base: where are the b’s. In Metainformatics 2002, volume
2461 of LNCS, pages 112–117, 2003.

16. S. Konrad, B. H. C. Cheng, L. A. Campbell, and R. Wassermann. Using security patterns
to model and analyze security requirements. In Proc. of the Requirements for High Assur-
ance Systems Workshop (RHAS03) as part of the IEEE Joint International Conference on
Requirements Engineering (RE03), Monterey Bay, CA, USA, September 2003.

17. L. Rising. Pattern forms. In Proceedings of Viking PLOP 2003, 2003.
18. G. Rossi, A. Garrido, and S. Carvalho. Design Patterns for Object-Oriented Hypermedia

Applications. Pattern Languages of Programs II. Addison-Wesley, 1996.

140 S. Montero, P. Díaz, and I. Aedo

19. J. Smith and D. Stotts. Elemental design patterns: A link between architecture and object
semantics. Technical Report Technical Report TR02-011, Univ. of North Carolina at Chapel
Hill, March 2002.

20. T. Taibi and D. C. Ling Ngo. Formal specification of design patterns - a balanced approach.
Journal of Object Technology, 2003.

21. M. Van Welie. Amsterdan collection of patterns. URL: http://www.welie.com. Visited
January 2004.

Describing Use Cases with Activity Charts

Jesús M. Almendros-Jiménez and Luis Iribarne

Dpto. de Lenguajes y Computación, Universidad de Almeŕıa, Spain
{jalmen, liribarne}@ual.es

Abstract. The Model-Driven Development (MDD) describes and main-
tains models of the system under development. The Unified Modeling
Language (UML) supports a set of semantics and notation that addresses
all scales of architectural complexity by using a MDD perspective. Use
Cases and Activity Charts are two modeling techniques of the UML. The
first one helps the designers to identify the requirements of the system
discovering its high level functionality. The second one helps them to
specify the internal behaviour of a certain entity or subsystem of the
software developed, such as a database, a graphical interface, a software
component, or any specific software. However, there is not a direct way
to relate/model the requirements (use cases) with their internal behav-
ior (activity charts). In this paper we present a method for describing
use cases with activity charts. Our technique also allow us to identify
the two main use case relationships —include and generalization— by
means of activity charts. As a case study, we will show how to use the
activity charts to describe graphical user interfaces (GUI) from use cases.
In particular, we will show an Internet book shopping system example.

1 Introduction

The general processes applied in the development of systems handle the use
of solutions based on spiral methodologies [Boe88, Nus01]. These solutions are
focused on an iterative use of practices of analysis and design (A&D) and the
building of rapid prototypes of several parts (i.e., the business, data and presen-
tation logic) and stages (analysis, design and coding) of the system.

In general, a development process begins with the high level elicitation and
description of the requirements of the domain to be modeled. These require-
ments are then systematically and progressively refined under development. In
the process, rapid prototypes of models of the system are simultaneously devel-
oped, which are continuously revised by the designers. These revisions change
the state of the collection of requirements, modifying or removing the require-
ments and/or dependencies between requirements, or adding some news one.
The spiral model allows us to model the presentation, data and business logic
in a concurrent and iterative way. Nevertheless, although this concurrent de-
velopment method does not imply an independent development between its
parts —since there exist a connection— it gets the development of rapid proto-
types of models, driving it on the bit parts of the system. The development of

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 141–159, 2004.
c© Springer-Verlag Berlin Heidelberg 2005

142 J.M. Almendros-Jiménez and L. Iribarne

these rapid prototypes may involve different platforms (such as J2EE or .NET),
domains (such as real-time systems, database, graphical interfaces, or software
components) and tools (such as IDL, XML or OCL). As a result of this, the
Model-Driven Development style (MDD) [OMG03] is generating increasing in-
terest due to the needs of methodologies getting a rapid development and a
direct connection between models.

The Unified Modeling Language (UML) [OMG03] is an A&D feature that
supports a set of semantics and notation to address all scales of architectural
complexity under MDD perspectives. For instance, the Use Cases and Activ-
ity Charts are two modeling techniques of the UML. The first one helps the
designers to identify the requirements of the system, discovering its high level
functionality. The second one helps them to specify the internal behaviour of
a certain entity or subsystem of the software developed, such as a database, a
graphical interface, a software component, or any specific software. However, a
direct way to relate/model those requirements identified in the use cases with
their internal behaviors modeled in the activity charts is not immediate.

In order to address this gap between models, this paper presents a method
that proposes how to describe use cases into activity charts. This method can
be considered as a concrete proposal to describe/connect models in the MDD
arena, use cases and activity charts in this case. The technique also allows us
to identify the two main use case relationships (include and generalization) by
means also of activity charts. In order to clarify the method, this paper presents
a case study that puts into practice our approach. This case study handles the
use case model for designing Graphical User Interfaces (GUI). In particular,
we will show a design example of an Internet book shopping system. However,
this is just a case study of our approach which is enough general to be used for
specifying other system views from the use case model, such as data and business
logic, which can complete the system’s views following the UML philosophy.

The rest of the paper is organized as follows. Section 2 includes background
information on what drove the requirements and the design rationale in the
Unified Modeling Language (UML). Section 3 describes a general method for
describing use cases with activity charts, and the identification of use case re-
lationships. Section 4 describes an specialization of our method oriented to the
design of GUI. Then, Section 5 presents an Internet Book Shopping example
that illustrates our method. Finally, Section 6 discusses some conclusions and
future work.

2 Discussion of the Unified Modeling Language (UML)

The UML helps the designers working on analysis and design (A&D) with a
consistent language for specifying, visualizing, constructing, and documenting
the artifacts of software systems. One of the primary goals of the UML is to
enable meaningful exchange of model information between tools, agreement on
semantics and notations (for instance, providing IDL specifications as a mech-

Describing Use Cases with Activity Charts 143

anism of model interchange between OA&D tools). The choice of what models
and diagrams to create has a profound influence upon how a problem is attacked
and how a corresponding solution is shaped. Every complex system is best ap-
proached through a small set of nearly independent views of a model. No single
view is sufficient.

The UML diagrams provide multiple perspectives of the system under analy-
sis or development. The underlying model integrates these perspectives so that a
self-consistent system can be analyzed and built. The diagrams, along with sup-
porting documentation, are the primary artifacts that a designer sees, although
the UML and supporting tools will provide for a number of views. UML looks for
techniques, including component technology, visual programming, patterns and
frameworks. UML seeks techniques to manage the complexity of systems as they
increase in scope and scale. In particular, the UML recognizes the need to solve
iterative architectural problems. One of the key motivations in the minds of the
UML developers was to create a set of semantics and notation that adequately
addresses all scales of architectural complexity, across all domains. The primary
goals of the UML are:

(1) Provide users with a ready-to-use, expressive visual modeling language to
develop and exchange meaningful models;

(2) Furnish extensibility and specialization mechanism to extends the core con-
cepts;

(3) Support specifications that are independent of particular programming lan-
guages and development processes;

(4) Support higher-level development concepts such a components, collabora-
tions, frameworks and patterns.

With regard to (4) the UML should be tailored as new needs are discovered,
and for specific domains, specializing the concepts, notations, and constraints
for particular application domains.

2.1 Use Case Models

In the UML, one of the key tools for behaviour modeling is the Use Case model,
originated from the Object-Oriented Software Engineering (OOSE) [JCJO92].
Use cases are a way for specifying required usages of a system. Typically, they
are used to capture the requirements of a system, that is, what a system is sup-
posed to do. The key concepts associated with the use case model are actors
and use cases. The users, and any other systems that may interact with the
system, are represented as actors. Actors always model entities that are outside
the system. The required behaviour of the system is specified by one or more use
cases, which are defined according to the needs of actors. Each use case specifies
some behaviour, possibly including variants, that the system can perform in col-
laboration with one or more actors. Use cases define the offered behaviour of the
system without reference to its internal structure. These behaviours —involving
interactions between the actor and the system— may result in changes to the

144 J.M. Almendros-Jiménez and L. Iribarne

state of the system and communications with its environment. A use case can in-
clude possible variations of its basic behaviour, including exceptional behaviour
and error handling. Each use case specifies a unit of useful functionality that the
system provides to its users, i.e., a specific way of interacting with the system.
The behaviour of a use case can be described by means of interaction diagrams
(sequence and collaboration diagrams), activity charts, and states diagrams, or
by pre-conditions and post-conditions, as well as natural language text where
appropriate. Which of these techniques to use depends on the nature of the use
case behaviour as well as the intended reader.

From a pragmatic point of view, use cases can be used for the specification
of the (external) requirements on an entity, and for the specification of the
functionality offered by an (already realized) entity. Moreover, the use cases also
indirectly states the requirements that the specified entity imposes in its users,
i.e., how they should interact so the entity will be able to perform its services.
One actor can communicate with several use cases of an entity, i.e., the actor
may request several services of the entity, and one use case communicates with
one or several actors when providing its service. In the case where subsystems are
used to model the system’s containment hierarchy, the system can be specified
with use cases at all levels, and use cases can be used to specify subsystems and
classes. In addition, actors representing potential users describe the particular
system views of each user, and inheritance between actors is used for specifying
common (inheritance of) view of the developed system.

2.2 Generalization and Include Relationships

One of the most controversial elements of the use case model along the UML
development has been the Use case relationships named inclusion, generalization
and extension, introduced by Jacobson [Jac03]. These relations have an unstable
semantics along the UML development. They have received several interpreta-
tions [GLQ02, Sim99, MOW03, MOW04], reflecting a high degree of confusion
among developers. Our approach for specifying use cases with activity charts
is also concerned with the study of use case relationships. In particular, we are
interested in the study of the relationships inclusion and generalization. The aim
of our work is to provide a more formal definition of use case relationships in
terms of their specification by means of activity charts. Our idea is to compare
activity charts in order to compare use cases. Such a comparison is abstract
and is defined in term of states and transitions included in the activity charts,
and interpreted as generalization and <<include>> relationships. This topic of
research has not been enough explored, although there exist some works which
have studied it [Ste01, OP99, Sim99]. On one hand, in [Ste01] use cases are de-
scribed by means of state machines, and inclusion relationship is studied. On
the other hand, in [OP99, Sim99] the cited and extend relationship proposed by
Jacobson are discussed but without providing a formal description.

From a pragmatic point of view, an inclusion relationship between two use
cases means that the behaviour defined in the target use case is included at one
location in the sequence of behaviour performed by the base use case. A use case

Describing Use Cases with Activity Charts 145

may be included in several other use cases, and a use case may include several
other use cases. In that sense, the included use case represents encapsulated
behaviour which may easily be reused in several use cases. A generalization rela-
tionship between use cases implies that the child use case contains the sequences
of behaviour and participates in all relationships of the parent use case. The
child use case may also define new behaviour sequences, as well as additional
behaviour, and specialize existing behaviour of the inherited ones. A use case
may have several parent use cases, and a use case may be a parent to several
other use cases. Therefore, inclusion and generalization relationships are closely
related with well-known concepts on object-oriented A&D, such as encapsula-
tion and inheritance. Up to now, this interpretation has been intended for UML
experts, but it needs particular interpretations depending on the diagrams used
for specifying use cases.

Due to the iterative perspective of the model-driven development of the UML,
the use case view of a system can be refined in the development process, and
therefore, inclusion and generalization can also be used for tracing the develop-
ment. System designers can include, generalize and specialize certain use cases
which were described in early stages of the development process. In summary,
use case model can be used for documenting both the final system and the de-
velopment process, enabling the maintenance of the system. From the point of
view of future system designers, use case model allow the knowledge of the sys-
tem (components) structure and behaviour and the relationships of integrated
components: tasks, requirements, services, external needs, behaviour, and so on.
The integration of a new system with the older one should take into account the
particular requirements specified on the use case model.

2.3 Activity Charts

Activity charts basically describe the set of states (and the corresponding tran-
sitions) which a given entity follows when a given service is required. Therefore,
activity charts can be used for specifying the internal behaviour of a certain
entity or subsystem of the developed software, such as a database, a graphical
interface, a software component, or any specific software. Depending on the na-
ture of the entity to be specified, the states can describe internal states, that
is, states in which no interaction with the environment is achieved, and external
states which involves communication with actors and other entities. In addition,
transitions can be also subdivided following the same criteria, that is, internal
transitions achieved by the entity and external transitions with participation of
the outside world.

In our approach, an activity diagram is used for specifying the set of be-
haviour sequences of a given use case, allowing the detection of included use
cases (included sequences of behaviour) as well as more general and particular
use cases (generalizing and specializing sequences of behaviour). With this aim,
we need to define an abstract definition of similar properties on activity diagrams,
named inclusion and generalization. Given that activity diagrams handle states
and transitions, which describes behaviour sequences, the inclusion and general-

146 J.M. Almendros-Jiménez and L. Iribarne

ization relationships between activity diagrams are defined in terms of behaviour
sequences. The case of inclusion is simpler describing subsequences of behaviour,
but generalization uses in its definition an abstract replacement relationship. It
can be identified with the usual concept of replacement of object-oriented A&D,
that is, a certain component offers the same functionality (eventually, adding
new functionality) as another one, and therefore the second one can be replaced
by the first. This generic view of replacement induces a generic generalization
relationship on activity diagrams, which induces the same use case relationship.
Therefore use case modeling offers an object-oriented system view.

3 A Method to Describe Use Cases with Activity Charts

In this section, we will show how to describe use cases with activity charts. With
this aim, we present a method based on the identification of use case relationships
from the description of activity diagrams.

3.1 Identifying Actors and Use Cases

Firstly, the developer describes the functional requirements of the system by
means of a use case diagram. A use case diagram consists of a set of actors
(users and external systems) and use cases.

Relationships between actors are generalizations. An actor p is more general
than another actor q whenever q can interact with the system as p and addition-
ally, can interact in more cases. The developer should also identify the set of use
cases related to each actor that will represent the set of tasks to be achieved by
the actor. Relationships between actors and use cases are called associations. In
our method, generalizations and associations may be identified in the first step,
but they can be refined later. This first developing process will get a (still non
formal) use case diagram.

3.2 Describing Use Cases with Activity Charts

Once the actors and use cases associated with each actor have been specified,
the developer should provide in a second step a set of activity charts to describe
each use case in the use case diagram. They may be basically specified in the
early stages of the development process and refined later.

Activity charts are graphs linking states by means of transitions, which are
arrows connecting an origin state and an end state. There are two special states:
initial and final states. Initial (resp. final) state is the starting (resp. end) point
of the activity chart. Each state may represent a system state and transitions
can represent actor interactions (user events, external system calls) or internal
system behaviour (execution steps and threads).

Transitions are labeled by means of conditions/actions, representing condi-
tions to be hold and actions to be achieved for state change. There can be dia-
monds between transitions describing alternative paths depending on a boolean

Describing Use Cases with Activity Charts 147

condition. An state can also be described by means of a separate activity chart,
describing (sub)states and transitions performed in the state. In this case, the
state is called non-terminal state, and otherwise it is called terminal states.

3.3 Identifying Activity Chart and Use Case Relationships

The third (and last) step consists on the identification of use case relationships
from the described activity charts. The relationships between uses cases are
<<include>> dependencies, together with generalizations. Here, the developer
should apply the following rules to compare activity charts, which induces the
<<include>> and generalization relationships between use cases. This provides
a new more formal and refined use case diagram in which there have been speci-
fied the cited use case relationships. Both activity diagrams and use case diagram
can be refined in later stages of the development process when the knowledge
of the system requirements is refined. That is, use case relationships can be late
detected due to the refinement of the activity diagrams.

Identifying Activity Chart Relationships. Firstly, we have to assume that
terminal states and transitions of activity charts can be compared by means of
a (reflexive) replacement relationship � in such a way that two (terminal) states
satisfies s � s′ (or two transitions λ � λ′) whenever s′ can be replaced by s
(or λ′ can be replaced by λ). The replacement relationship can express similar
semantics (or behaviour). The replacement relation should be decided by the
developer.

This replacement relationship induces a replacement relationship on activity
charts in such a way that an activity diagram a′ can be replaced by a if the
states and transitions of a′ can be replaced by the states and transitions of a.

In addition, activity charts can be compared by means of an inclusion re-
lationship. Inclusion can be intended as an activity chart that includes another
one, but without changing the behaviour, that is, states and transitions are not
modified, and neither new states or transitions can be added over the included
activity chart. In practice, if an activity chart a includes an activity chart a′

then one of the states of a is a′, although a may implicitly include all the states
and transitions of a′. For simplicity, we assume the first case.

Obviously, some activity charts may not be compared by means of replace-
ment and inclusion relations, this means they do not describe “similar” activities.
However, some activity diagrams can be compared by means of a combination
of replacement and inclusion and not by a single one. In this case, in order to be
compared, there should be defined intermediate activity charts (decomposing the
activity charts), in such a way the original activity diagrams could be compared
through a chain of relationships. In the whole development process, intermedi-
ate activity diagrams can be detected when specifying new users interactions of
refinement of the existent ones.

148 J.M. Almendros-Jiménez and L. Iribarne

Identifying Use Cases Relationships. Once we can compare activity charts
by means of the above relationships, the use cases —which are described by
means of activity charts— can also be compared by means of the following
relationships.

— A use case u includes a use case v whenever the activity chart of u includes
the activity chart of v.

— A use case u is more general (generalizes) than other v whenever there exists
an activity diagram u′ such that u can be replaced by u′ and v includes u′.

In the UML there are some additional information about the use case dia-
grams like roles, multiplicity, directionality, and extend dependencies, but they
will not be considered in our approach yet.

4 A Case Study for GUI Design

In order to clarify the cited concepts, in this paper we present a case study that
puts into practice our approach. This case study handles the use case model for
designing Graphical User Interfaces (GUI). Our general method can be special-
ized depending on the nature of the system to be developed or the part of the
system to be build. Although we have decided to apply our method for designing
GUIs (that is, to describe the presentation logic of the system), however, it does
not means that the first view of the system to be developed is the user interface.
Following the UML philosophy, many views of a system can be built in the early
stages and refined in later steps, such as business and data logic views. Each stage
complements each other, providing a multiple view perspective of the developed
system. We have chosen the user interface view as case study given that by its
simplicity the main concepts of our approach (i.e., inclusion and generalization)
can be detected in user interface design.

Graphical user interfaces have become increasingly dominant, and the de-
sign of the “external” or visible system has assumed increasing importance.
This has resulted in more attention, being devoted to usability aspects of in-
teractive systems, and a necessity of tool development that supports the design
of the presentation logic. Models and notations are required to describe user
tasks, and map these tasks on to the user interface. The user interface (as a
significant part of the most applications) should also be modeled using UML.
However, it is by no means always clear how to model user interfaces using
UML, although there are some recent approaches [Kov98, dSP03, dSP00, EK00,
EKK99, Nun03, BNT02] which have addressed this problem. The proposals of
[dSP03, dSP00, Nun03] identify some aspects of GUI that cannot be modeled
using UML notation, and a set of UML constructors that may be used to model
GUI. However, a methodology for GUI design using the use case model is not
completely addressed, and there also exists a lack of formal description of use
cases and a correspondence between use case relationships and GUI components.

Describing Use Cases with Activity Charts 149

Another similar work to our contribution is [EK00, EKK99] in which state ma-
chines and Petri-nets are used to specify GUI in UML. In the quoted approaches
they specify user interaction but they also lack of use case relationships handling.

In our case study, activity charts are used for describing user interaction. In
particular, they describe the presentation logic of an applet-based system (similar
to [EK00, EKK99]), in which a set of applet windows are shown to the user, and
the user interacts with them in order to put and get data from the system.
With respect to this choice, our aim is not to constraint the implementation to a
particular window system but the acceptance of the JAVA swing classes between
developers allows us to assume the reader is familiarized with the implementation
details of the GUIs. Our framework can be adapted to others user-interface
development technologies with a bit of effort, adding new UML stereotypes for
both input and output components, and making similar mappings between use
cases and other kind user windows.

4.1 Specializing Activity Charts

In the activity charts, states represent outputs to the user which are labeled
with UML stereotypes representing visual components for data output. Transi-
tions represent user inputs which are labeled with UML stereotypes representing
visual components for data input and choices. Once activity diagrams describe
each user interface for each actor in the use case model, the inclusion relation-
ship describes subsequences of interaction with the graphical interface and the
generalization relationship inheritance of common (eventually, more particular)
tasks and interactions between several users.

The activity charts can be specialized for describing user interaction as
follows:

— Each state of the activity chart describing a use case necessarily falls in one
of the two following categories:
• A terminal state is labeled with a UML stereotype representing an output

GUI component. Therefore, they are also called stereotyped states.
• A non-terminal state is not labeled and is described by means of an

activity chart. The non-terminal states can be “use cases” of the use
case diagram or not.

— Each transition in the activity chart of a use case can be labeled by means of
conditions or UML stereotypes with conditions. The UML stereotypes repre-
sent input GUI components. This kind of transitions is also called stereotyped
transitions. The conditions represent use choices or business logic.

With respect to the relation of replacement, it is useful for instance to reuse
some design artifacts of a model (i.e., a collection of states, transitions, stereo-
types), or change the functionality of an artifact. In the case study the stereo-
typed states can be replaced whether the output GUI component can be replaced.
For instance, a list with two columns can be replaced by another list with three
columns without lost of functionality. The same happens with stereotyped in-
teractions which can be replaced if the input GUI components can be replaced.

150 J.M. Almendros-Jiménez and L. Iribarne

For instance, a selection of any of the cited list. Finally, conditions can be, for
instance, replaced if one of them is more restrictive than the other.

4.2 Building GUIs

Now, we can build our GUI from the use case diagram and the set of activity
charts following the next rules:

— Each actor representing a user in the use case diagram is an applet1. Ac-
tors representing external systems are not considered for visual component
design.

— The generalization relationships between two actors p and q (p generalizes q)
corresponds with inheritance of the applet represented by q from the applet
representing p2.

— Each use case in the use case diagram is an applet3.
— The generalization relationship between two use cases u and w (u generalizes

w) corresponds with inheritance of the applet representing w from the applet
representing u.

— The <<include>> relationship between two use cases u and w (u includes
w) corresponds with the invocation from the applet representing u of the
(sub)applet representing w4.

— In the non-terminal states case, the use case diagram can specify <<include>>
or generalization relationship between the non-terminal state and the use case,
and we follow these rules:

• In the <<include>> relationship case, the non-terminal state is also
an applet and contains the GUI components in the associated activity
diagram.

• In the generalization relationship case, the non-terminal state is also an
applet containing the GUI components in the associated activity dia-
gram, but the use case also contains these GUI components.

— The non-terminal states —which does not appear in the use case diagram—
are not applets, and the GUI components in the associated activity diagrams
are GUI components of the applet of the use case.

— The conditions of the transitions of an activity chart are not taken into
account for the GUI design.

1 For some complex user interfaces, the applet class could be replaced with other
specialized swing classes like the frame class, which enables to build a single window
in which the complete functionality of each actor is presented.

2 When using frames we can use inheritance of frames.
3 When using a frame for implementing an actor, a use case connected with an actor

can be implemented either with a separate applet or using a window area, and an
applet built in the main frame.

4 When using frames, the invocation can be replaced by the built-in of the applet.

Describing Use Cases with Activity Charts 151

5 The Internet Book Shopping (IBS) Example

In this section, we will explain a simple example of an Internet book shopping
(IBS) that illustrates the functionality of our proposed method. In the IBS there
will basically appear three actors: (a) the customer, (b) the ordering manager,
and (c) the administrator. A customer actor directly carries out the purchases
by the Internet. The customer can also consult certain issues of the product in
a catalogue of books before carrying out the purchase. On the other hand, the
manager deals with (total or partially) customer’s orders. Finally, the system’s
administrator actor can manage the catalogue of books adding and removing new
books in the catalogue or modifying those already existing. The administrator
can also update or cancel certain component characteristics of an order or those
orders fulfilling certain searching criteria. Furthermore, both the manager and
the administrator should identify themselves before carrying out any kind of
operation restricted to his/her environment of work.

Considering this framework, in the next sections we will describe an IBS GUI
project that illustrates the proposed method, i.e., how to connect the system’s
use cases description to activity charts. This connection helps the developer
to translate and/or connect some analysis features (i.e., use cases descriptions)
to/with behavioural descriptions of the system. In our case, these behavioural
descriptions only will concern with activity charts.

5.1 Modeling the IBS System Using Use Cases

Let’s suppose that the developer of the IBS system wishes to model the presen-
tation logic by means of use cases. Initially, the use case diagram contains the
identified actors of the system: in our IBS example, the actors are the Customer,
the Manager and the Administrator.

To model the presentation logic of the IBS system, the developer should
previously identify all those future windows of the system (graphical user in-
terfaces), carrying out some quick outline of their content5. The connection of
an actor with one or more use cases in the use case diagram will be interpreted
as a set of options (menu) on a first window on which the actor will interact
with the system. Figure 1 shows some prototypes of those windows of the IBS
presentation logic that the developer wants to reach6.

Initially, the use case diagram, which models the IBS presentation logic,
contains three kinds of interfaces identifying the actors of the system. A first
non-formal description of the IBS system using a use case diagram is shown in

5 As we said before, the model-driven development follows an iterative refinement pro-
cess and therefore, here, we are supposing the designer has a well-defined collection
of the GUI requirements.

6 The windows shown in Figure 1 are only a pragmatic simple example as result
obtained after applying our method. We suppose that the designer of the system has
decided (for any reason) this window organization. We do not consider whether the
distribution is suitable or rationale.

152 J.M. Almendros-Jiménez and L. Iribarne

Fig. 1. Some windows of the IBS presentation logic

Figure 2. The diagram also contains all the high-level functions represented by
means of use cases. For example, note that the administrator’s interface agrees
to the presentation logic through three possible options (use cases): Manage
catalogue, Update orders and Update partial orders. Something similar
happens to the remainder actors of the system.

Purchase

Update partial orders

Manage catalogue

Customer

Administrator

Manager

Manage orders
Update orders

Manage partial orders

Fig. 2. A non-formal use case description of the IBS example

As we have mentioned in the previous section, the non-formal definition of
the system will be refined, causing more precise use cases diagram(s). Figure
3 shows a more complete presentation logic definition for the IBS system. In
this case, we have chosen to include all the presentation logic in a single use
case diagram, although it could be itemized in more than one to deal with more
structured use case descriptions.

Let’s see now certain aspects of the use case diagram shown in the figure.
Firstly, we emphasize the use given to the relationships <<include>> and gen-
eralizations. In our method, the <<include>> relationship can be used to repre-
sent optional or mandatory behaviour. This two kinds of relationships are prop-
erly modeled and interpreted in the activity charts associated with both con-

Describing Use Cases with Activity Charts 153

Fig. 3. The refined IBS use case diagram

nected use cases, since use case diagram does not distinguish between hard/soft
dependencies (i.e., mandatory/optional relationships). For instance, the use case
Manage catalogue is an applet that directly depends on four use cases, con-
nected to them by means of a <<include>> relation. However, these connections
are similar to three of them, and different from the others. The <<include>>
relationships between the use cases Withdraw article, Modify article and
Add article were modeled by the system’s designer as relations of optionally
(the branches of the use case Manage Catalogue’s behaviour go to these states
in the activity chart). However, the use case Administrator identification
was considered by the system’s designer as a relation of mandatory (this state
is always reached in the activity chart) of the use case Manage Catalogue.

Therefore, an <<include>> relationship can mean that a use case could be
considered as a composition of two or more other use cases. For instance, the
use case Manage catalogue is composed of the use cases Withdraw article,

154 J.M. Almendros-Jiménez and L. Iribarne

Modify article and Add article (i.e., applets or frames). An <<include>>
relationship can also indicate that a use case mandatory depends on another
use case to operate. For example, since the administrator should be itself iden-
tified before working with the system, the three use cases which he/she directly
operates with (i.e., Manage catalogue, Update orders and Update partial
order) mandatory depend on the Administrator identification use case.

In our case, the relation of generalization is intended as an inheritance of
behaviour (i.e., GUI components). For example, the use case Query catalogue
has been established as a generalization of the use case Purchase. This relation
will mean that, due to own reasons, the developer of the system wishes to model
the purchasing process re-using and modifying the functionality of the query
process. Note how the use case Query catalogue by administrator also in-
herits from query catalogue and generalizes the use cases Withdraw article,
and Modify article connecting them to a part of the client’s presentation logic
and the administrator side

The distinction between include relationships (mandatory, optional) and gen-
eralization is established by the system’s designer into the activity charts of those
include-connected use cases. In the following sections we will only focus on the
Purchase use case to explain the behaviour of the method.

5.2 Mapping the IBS Features, Use Cases into Activities

As the developer stated, each use case modeling the presentation logic will cor-
respond with an applet (or frame) component. Activity charts describe certain
graphical and behavioural details about the graphical components of an ap-
plet. In our case study, we have only adopted four JAVA graphical components:
JTextArea, JList, JLabel and JButton. Nevertheless, other graphical elements
could be easily considered in the activity chart since they are modeled as state
or transition stereotypes.

Graphical components can be classified as input (a text area or a button) and
output components (a label or list). Input and output graphical components
are associated with terminal states and transitions by using the appropriate
stereotype, for instance, JTextArea, JList, JLabel stereotypes are associated
with states and JButton stereotype to transitions. Since the graphical behaviour
concerns to states and transitions, next we will describe them separately.

A state can be stereotyped or not. Stereotyped states represent terminal
states which can be labeled by the <<JTextArea>>, <<JList>> and <<JLabel>>
stereotypes. For instance, Figure 4 shows the activity chart for the Purchase use
case. This diagram shows the graphical and behavioural content of the applet
window where the purchases can be carried out. The activity chart is composed of
four states. Two of them are terminal states, since they correspond to graphical
elements. They are stereotyped (<<JTextArea>>) and labeled by a text related
to the graphical element. Two other states have been described in a separate
activity chart in order to structure better the design. The name of a separate
activity chart should be the same as the one of the state.

Describing Use Cases with Activity Charts 155

The activity chart’s behaviour, in Figure 4, shows how the customer begins
the purchasing process of querying, adding or removing articles of the shopping
cart. After a usual purchasing process, the shopping system requests the cus-
tomer a card number and a postal address to carry out the shipment, whenever
the shopping cart is not empty.

Fig. 4. The activity chart for the Purchase use case

According to the GUI developer’s rules, if a state is not labeled with a stereo-
type, this means that the state is described in another activity chart. This new
activity chart can either represent the behaviour of another use case or simply a
way of allowing a hierarchical decomposition of the original activity chart. For
example, in the activity chart associated with the Purchase use case (see Figure
4), there appear two non-terminal states: Manage shopping cart and Notify
shopping cart empty. At the same time, two activity charts are described for
both states. All these activity charts are shown in Figure 5.

In the activity chart of the Notify shopping cart empty use case, we can
observe how the target use case (being modeled) brings to an activity chart. The
model represents a warning applet window containing only the text Shopping
cart empty and the button Close to close the warning window. In the Manage
shopping cart activity chart, the states Query catalogue and Shopping cart
are itemized on independent activity charts. Both states would also correspond
with an applet, since they appear as use cases in the use case diagram.

Transitions in the activity chart can be labeled by means of stereotypes,
conditions or both together. For instance, a button is connected to a transition
by using the <<JButton>> stereotype, and the name of the label is the name of
the button. For example, a Show cart transition stereotyped as <<JButton>>
will correspond with a button component called “Show cart”.

Conditions can represent user choices or business/data logic. The first one
is a condition of the user’s interaction with a graphical component (related to
button or list states), and the second one is an internal checking condition (not

156 J.M. Almendros-Jiménez and L. Iribarne

related to the states, but to the internal process). For example, in our case
study the selections on a list are modeled by conditions. Note in the Query
Catalogue activity chart shown in Figure 5 (b), the list Results is modeled
by a <<JList>> state and the condition [Selected article]. Figures 4 and
5 show transitions (p.e., [Close], [Exit] or [Proceed]) that correspond with
conditions of the kind user choice. The [Exit] output transition of the state
Manage shopping cart means that the user has pressed a button called Exit,
which has been defined in a separate Manage shopping cart activity chart (see
Figure 5). Nevertheless, the [shopping cart no empty] and [shopping cart
empty] conditions are two business/data logic conditions, in which the human
factor does not participate.

Furthermore, stereotyped transitions (buttons in our example) and conditions
connect (non) terminal states to (non) terminal states. As we said before, a
condition would be an output of a non-terminal state in case the user interacts
with a button or a list component inside the respective non-terminal state. The
usual way “condition/action” transition can connect (non) terminal states to
(non) terminal states. A condition/action transition between states means which
condition should be present to achieve the action. In our case study, an action
can only be a button. For instance, to remove an article from the shopping cart,
it must previously be selected from the cart list (Figure 5, c).

Condition/action transitions are also useful to model the behaviour of the
generalization relationships between use cases in a use case diagram. Note in
the original use case diagram how the Purchase use case inherits the behaviour
of the use case Query catalogue by means of a generalization relationship.

Fig. 5. The whole activity chart of the Purchase use case

Describing Use Cases with Activity Charts 157

This inheritance behaviour is modeled in the Purchase activity chart as a non-
terminal state that includes the behaviour of the Query Catalogue activity chart.
For example, let us observe the behaviour of the query catalogue shown in Figure
5 (b). In this activity chart, the user introduces the searching criteria in the text
area, presses the button Search and then the results are shown on a list. After
that, the user can select articles in the list, presses a button to exit or try a new
search by pressing the button Clear. Thus, when the Purchase use case inherits
the Query Catalogue use case, it should be possible to interrupt its behaviour.

Condition/action transitions can be used to interrupt an inherited behaviour.
For example, the query catalogue’s behaviour (previously described) is adopted
in the activity chart of the Purchase use case as a non-terminal state called Query
catalogue (see Figure 5, a). The output transition [Selected article]/Add
to cart mean that the Add to cart button at the Purchase applet (use case)
can interrupt the query catalogue behaviour whether an article has been selected
(condition). Analogously, the output transitions Proceed and Show cart at the
Purchase applet (use case) mean that both the Proceed and Show cart buttons
can interrupt the inherited behaviour of the query catalogue.

On the other hand, a generalization relationship does not only represent an
inheritance of the behaviour as an extension; for instance, the Purchase use case
inherits the Query Catalogue use case and increases its behaviour to hold the
buttons Add to cart, Show cart and Proceed. However, a generalization rela-
tionship can also deal with a replacement of behaviour instead of an increase
in behaviour. For example, note in the original use case diagram how the Query
Catalogue by Administrator also inherits the Query Catalogue. Let us suppose
that their behaviours (activity charts) are the same, but the results list shown
to the customer actor (the Results state) is different from that shown to the
administrator actor (for instance, Administrator Results state). In this case,
the system’s designer can use the behaviour (activity chart) of the Query Cata-
logue use case to model the behaviour (activity chart) of the “Query Catalogue
by Administrator” re-writing (replacing) the results list (p.e., replacing Results
by Administrator Results). This rule of replacement can also be considered
on transitions (p.e, replacing a button by another GUI component). Finally,
the conditions and “conditions/actions” can be also replaced. In all cases, is a
decision of the designer to allow the replacement of states and transitions.

To develop the IBS project example we have used the Rational Rose for Java
tool. For space reasons, we have included here just a part of the GUI project
developed for the case study. A complete version of the project is available at
http://www.ual.es/∼liribarn/Investigacion/usecases.html.

6 Conclusions and Future Work

In this paper, we have studied a method for describing use cases by means
of activity charts based on a Model-Driven Development (MDD) perspective
[OMG03]. The use case diagrams help the developer to identify the require-
ments of the system and to study its high level functionality. The activity charts

158 J.M. Almendros-Jiménez and L. Iribarne

allow us to discover new behavioural details of the system or to describe better
the already existing. Nevertheless, in this paper we have shown how a direct
correspondence between the requirements identified in the use cases with these
UML activity diagrams is feasible. The technique also allow us to identify the
two main use case relationships (include and generalization) by means also of
activity charts. Through a case study, we have shown how our technique can
be applied in GUI-oriented component development for rapid prototyping of the
external view of the system. Although in our approach we can completely specify
the behaviour of the GUI components of the system, in the early stages of the
system development a basic behaviour can be specified which could be refined
in later stages. We have chosen the JAVA swing classes and components for de-
scribing user interfaces due to the acceptance of this technology (applet, frames,
and events), however our approach can be adapted to other technologies for GUI
building (for instance, hypertext and hyperlinks). Finally, the use case model to-
gether the GUI specification with activity diagrams provide a description of the
behaviour and structure of the GUIs of the developed system, and in general
can be used for describing a library of reusable GUI components.

As a future work, we firstly plan to apply our general method to other parts
of the system (i.e. business or data logic). Secondly, we would like to extend
our work to deal with the <<extends>> relationship of use cases. Thirdly, we
would like to formalize and to incorporate our method in a CASE tool in order
to automate it. And finally, we would like to integrate our technique in the whole
development process.

Acknowledgements

The authors would like to thank the anonymous referees for their insightful
comments, that greatly helped them improve the contents and readability of the
paper. We would also like to thank to the attendees of MIS’04 for the suggestions
about our paper. This work has been partially supported by the Spanish project
of the Ministry of Science and Technology “INDALOG” TIC2002-03968 under
FEDER funds.

References

[BNT02] R. Biddle, J. Noble, and E. Tempero. Essential use cases and responsi-
bility in object-oriented development. In Australasian Computer Science
Conference (ACSC2002), 2002.

[Boe88] B. W. Boehm. A Spiral Model of Software Development and Enhancement.
IEEE Computer, 21(5):61–72, May 1988.

[dSP00] P. P. da Silva and N. W. Paton. User interface modelling with UML. In
Information Modelling and Knowledge Bases XII, pages 203–217. IOS Press,
2000.

[dSP03] P. P. da Silva and N. W. Paton. User Interface Modeling in UMLi. IEEE
Software, 20(4):62–69, 2003.

Describing Use Cases with Activity Charts 159

[EK00] M. Elkoutbi and R. K. Keller. User Interface Prototyping Based on UML
Scenarios and High-Level Petri Nets. In International Conference on Ap-
plication and Theory of Petri Nets (ICATPN 2000), pages 166–186. LNCS
1825, 2000.

[EKK99] M. Elkoutbi, I. Khriss, and R. K. Keller. Generating user interface proto-
types from scenarios. In IEEE International Symposium on Requirements
Engineering (RE ’99), page 150. IEEE Computer Society, 1999.

[GLQ02] G. Génova, J. Llorens, and V. Quintana. Digging into use case relationships.
In International Conference on the Unified Modeling Language (UML 2002),
pages 115–127. LNCS 2460, 2002.

[Jac03] I. Jacobson. Use Cases – Yesterday, Today, and Tomorrow. Technical report,
Rational Software, 2003.

[JCJO92] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-Oriented
Software Engineering: a Use Case Driven Approach. Addison-Wesley, 1992.

[Kov98] S. Kovacevic. UML and User Interface Modeling. In International Confer-
ence on Unified Modeling Language (UML’98): Beyond the Notation, pages
253–266. LNCS 1618, 1998.

[MOW03] P. Metz, J. O’Brien, and W. Weber. Specifying use case interaction: Types
of alternative courses. Journal of Object Technology, 2(2), March-April 2003.

[MOW04] P. Metz, J. O’Brien, and W. Weber. Specifying use case interaction: Clari-
fying extension points and rejoin points. Journal of Object Technology, 3(5),
May-June 2004.

[Nun03] N. J. Nunes. Representing User-Interface Patterns in UML. In International
Conference on Object-Oriented Information Systems (OOIS 2003), pages
142–151. LNCS 2817, 2003.

[Nus01] B. Nuseibeh. Weaving together requirements and architectures. IEEE Com-
puter, 34(3):115–117, March 2001.

[OMG03] OMG. Unified Modeling Language Specification, version 2.0 (MDA). Tech-
nical report, Object Management Group, June 2003.

[OP99] G. Övergaard and K. Palmkvist. A Formal Approach to Use Cases and
Their Relationships. In International Conference on the Unified Model-
ing Language (UML’98): Beyond the Notation, pages 406–418. LNCS 1618,
1999.

[Sim99] A. J. H. Simons. Use cases considered harmful. In International Confer-
ence on Technology of Object-Oriented Programming Languages and Sys-
tems (TOOLS-29 Europe), pages 194–203. IEEE Computer Society, 1999.

[Ste01] P. Stevens. On Use Cases and Their Relationships in the Unified Mod-
elling Language. In International Conference on Fundamental Approaches
to Software Engineering (FASE’01), pages 140–155. LNCS 2029, 2001.

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 160 – 178, 2004.
© Springer-Verlag Berlin Heidelberg 2005

Spatial Constraint Modelling with a GIS Extension of
UML and OCL: Application to Agricultural Information

Systems

François Pinet1, Myoung-Ah Kang2, and Frédéric Vigier1

1 Cemagref, Clermont Ferrand, France
{francois.pinet, frederic.vigier}@cemagref.fr

2 Laboratory of Computer Science, Modelling and System Optimisation (LIMOS),
ISIMA / Clermont Ferrand University, France

kang@isima.fr

Abstract. In numerous cases, the modelling of Geographical Information Sys-
tems (GIS) is a difficult task. This fact is partially due to the natural complexity
of spatial types and invariants. Based on this observation, the present paper
aims at specializing the Unified Modelling Language (UML) and its associated
Object Constraint Language (OCL) in order to facilitate the design of GIS. A
complete study of the proposed extensions will be presented as well as several
in-depth experiments in the domain of agricultural information systems.

1 Introduction

This paper focuses on the description of a specific formalism for spatial data
modelling and a complementary language for the expression of topological
constraints. The proposition aims at enabling designers to easily and clearly specify
aspects related to spatial information. For that, our proposition uses concepts that are
easy to understand for Geographic Information System (GIS) designers. Indeed, the
main goal of our works is to respond to the needs of information system designers in
offering methods more adapted to the field of GIS than classical modelling languages.
Our contribution allows to describe the complexity of both geographic types and
spatial constraints.

Firstly, this paper tries to formalize the integration of the concept of geographical
type constraints in the Unified Modelling Language (UML) [11]. The purpose of this
extension is to specialize UML in order to clarify and facilitate the specification of
spatial data types. In order to reach this goal, we use the concept of geographic class
i.e. a class that has an attribute used to store geometries. This paper underlines that
type constraints applied on class diagram are important to describe more precisely
spatial features. These constraints are related to the spatial attribute of a geographic
class in order to define more precisely what types of geometries are associated to the
class (a point, a polygon, a point or a polygon, a set of polygons…). The constraints
must be able to express the spatial aggregation (or composition), since it is an
essential operation in GIS.

 Spatial Constraint Modelling with a GIS Extension of UML and OCL 161

Secondly, beyond the needs of modelling geographic types, the main part of the
present paper responds to designer requirements concerning the expression of
topological constraints in class diagrams. In order to model these constraints, the
existing propositions suggest to draw relationships between classes [6], [12] (see the
example in figure 1). This type of representation cannot express constraints depending
on a specific condition (for example IF … THEN the constraint is applied ELSE …).
Thus, in order to define topological constraints more precisely, an extension of OCL
(Object Constraint Language)1 will be proposed and experimented; this extension
consists in adapting existing OCL constructs to geographical needs. The major
advantage of this approach is to benefit from OCL functions in order to express
topological constraints. The final goal of this extension is to give the capability to
generate automatically inside a GIS, a mechanism for integrity checking from a
conceptual modelling of spatial constraints.

Fig. 1. Two classes linked by a relationship "disjoint" in a class diagram; buildings and rivers
are geographically disjoint

We experiment our proposition for the design of agricultural information systems
(and more precisely in the context of sludge spreading management). The design of
this information system type is currently under way at Cemagref and a goal of our
OCL and UML extensions is to support this development. Thus, throughout this
paper, we will illustrate our proposition in the field of agricultural information
systems.

Section 2 of this paper introduces the UML extension dedicated to geographic type
modelling. Section 3 deals with the OCL extension for topological constraint design.
Last section concludes and draws some perspectives for future work notably
concerning the automatic triggers generation.

2 Modelling Geographical Type Constraints

Several studies show that the classical modelling languages like UML are not suitable
for the design of GIS [1], [5], [6], [7], [8], [12]. The difficulties are related to the
expression in class diagrams of the geographic types complexity. The question is,
how to represent geometries of objects with UML (e.g. geometries of Building
objects dedicated the be handled or to be displayed on a map)? The classical

1 OCL is the new generation constraint language of UML. This language has been developed by

IBM and currently, the standard is maintained by the Object Management Group. A growing
number of information system designers use OCL in complement of UML models [15].

Building River
disjoint

162 F. Pinet, M.-A. Kang, and F. Vigier

modelling consists in defining additional classes like Point, Polyline and
Polygon. Then, these classes are linked by associations to the other elements of the
diagram; unfortunately, with this method, the drawing is rapidly "overloaded" by
associations. The needs related to an "easy to read" representation of spatial data
features implied the propositions of several UML extensions [1], [5], [8]. These
different works implicitly use the concept of geographical type constraints i.e.
constraints that are related to the spatial attribute of a geographic class in order to
define what types of geometries are associated to the class.

Existing propositions are informal and their presentations are usually made "by
example". Thus, the contribution of this section is to suggest a precise formalization
of geographical type constraints. Our proposition is based on operations presented in
[1]; these operations are really interesting in the GIS domain because they can express
spatial aggregations.

In order to know in what cases two constraints are equivalent, the semantics of
type constraints will be defined (see appendix A). This theoretical foundation can
have several applications concerning the implementation of an algorithm checking if
two constraints have exactly the same semantics i.e. if two classes of objects can store
the same type of geometry.

2.1 Geographic Class and Type Constraint

The concept of geographic class is introduced in order to clearly identify the geometry
associated to an object. More precisely, each geographic class instance has a
geographic feature. In practice, a geographic class includes an attribute having a
spatial type i.e. the value of this special attribute can store a geometry. In this paper,
this attribute will be called geometry.

For example, a Country class can be viewed as a geographic class because each
object of this class is associated to the geometry of a country. In order to describe real
world entities, the geometry attribute can store data that are issued from spatial
aggregation; for example, a geometry of a Country class object can be composed by
several simple polygons (continental parts and islands).

This representation based on the use of a geometry attribute is especially suitable
for spatial data design because it corresponds to data structures often used in
geographic databases; for example, MapInfo supports this format [9] (see figure 2).
The implementation of a geographic class in a GIS is usually called a geographic
layer.

Constraints can be associated to geographic classes in order to indicate the types of
geometry found in attribute values. Thanks to the constraint specification, in the
example of the Country class, it becomes possible to model that each value of the
geometry attribute corresponds to several simple polygons. As presented below,
these constraints (called geographical type constraints) are defined by textual
expressions in which three types of operators can be combined:

− A XOR B; exclusive disjunction operator between A and B. For example "polygon
XOR point" indicates that the value of the geometry attribute only contains
either one polygon either one point (but not both).

 Spatial Constraint Modelling with a GIS Extension of UML and OCL 163

− A AND B; conjunction operator between A and B. "polygon AND polyline"
indicates that the value of the geometry attribute is only composed of one polygon
and one polyline.

− A MULT m; multiplicity operator implying A and a multiplicity m. "polygon MULT
(1..5)" indicates that the value of the geometry attribute is only composed of
"from 1 to 5 polygons".

Fig. 2. Implementation of a Country class in a MapInfo database and example of instances.
The features of a country are composed of three attributes (name, surface_area and
geometry). The geometry attribute has a cartographic representation and each of its values
can have a complex geographic type (such as a composition of simple polygons corresponding
to different parts of a country)

Thus, the type constraint "polygon XOR (point AND polygon)" associated to

a class C indicates that the geometry attribute of C must only contain: a) one element
having the polygon type, or b) a composition of one element having the point type
with one element having the polygon type. In other words, the value of the
geometry attribute must contain only "one polygon" or only "one point and one
polygon". The previous constraint is completely equivalent to "polygon AND

(point MULT (0..1))".
Also, the type constraint "(point AND polygon) MULT (1..*)" expresses that

the geometry attribute value must only contain point(s) and polygon(s); according to
the constraint, the geometry attribute value must contain the same number of points
as the number of polygons.

Note that a same type of operators can be found several times in a constraint
expression e.g. "point XOR polyline XOR polygon". The combined use of these
three operators types (XOR, AND, MULT) in textual constraints gives the possibility of

a. Country Class defined in
database specifications

b. Instances of the Country Class (alphanumeric features are
presented in a table and values of the geometry attribute appear

on a map).

Country

name

surface_area

geometry

164 F. Pinet, M.-A. Kang, and F. Vigier

modelling all alternative and complex geometry types (in the sense defined by ISO
and Open GIS Consortium standards). This includes the types of geometries issued
from spatial aggregation or composition; see [1] for information about spatial type
standards in geomatics, and [13] for details concerning the expression of the
aggregation with the three operators defined above.

It appears important to bring out an easy to use UML profile dedicated to GIS
design, and completely based on standard extension mechanisms. In order to meet this
need, the next subsection proposes a precise formalization of our UML extension in
using stereotypes or tagged values.

2.2 Stereotype and Tagged Value Definition

Geographic Data Type. Geographic class instances are objects having a specific
attribute named geometry. A class that specializes a geographic class is also
geographic. A stereotype <<geographic>> is associated to each geographic class.
We define that BasicGeoType is a type that generalizes the three types point,
polyline, polygon. The type of the geometry attribute is an unordered collection.
This collection is more precisely a bag (also called multiset) and can contain several
geographic elements having a BasicGeoType. Thus, the type of a geometry
attribute is Bag(BasicGeoType) i.e. type "bag containing elements that have the
point, polyline or polygon type". This data structure based on bags corresponds
to the perception of existing GIS data models by designers; indeed, to define a GIS, a
total order on geographic objects is generally not needed and two objects can occupy
the same XY location.

Fig. 3. Formalization for GIS design

Type Constraint. In order to easily define combinations of geographic types, this
paper proposes to use a non-ambiguous textual representation of type constraints. In
fact, constraints can be set on the contents of bags. Indeed, in using three operators
(XOR, AND, MULT) and the geographic type names (point, polyline, polygon), it
is possible to express what kind of elements can be contained in bags (see section
2.1). In order to model a type constraint, a new tagged value called
geoTypeConstraint is introduced inside geographic classes. For example, the
tagged value "{geoTypeConstraint=point XOR (polygon MULT (0..*))}"

Class
<<metaclass>>

<<stereotype>>
geographic

Tags

geoTypeConstraint: GeoConstraintExpression

<<stereotype>>

 Spatial Constraint Modelling with a GIS Extension of UML and OCL 165

declared in the definition of a class C, expresses that the geometry attribute value of
C can only contain "one point" or "from 0 to n simple polygons". In this case, the
form of the geometry attribute values is Bag{}, Bag{point1} or Bag{polygon1,…,
polygonn} i.e. an empty bag, a bag containing a point, or a bag containing from 1 to n
polygons. Figure 3 formalizes the proposed profile in using UML notations. The
expression type that combines XOR, AND, MULT is a GeoConstraintExpression
which corresponds to the tagged value type. The next subsection illustrates the
introduced concepts in the domain of agricultural information systems.

2.3 Domain-Specific Example of Type Constraint Use: Case Study in
 Agriculture

In agriculture, the sewage sludge spreading is considered as a good way to recycle
waste issued from sewage plants; this technique consists in depositing sludge
directly on fields. This type of low cost practices gives the possibility not only to
recover waste, but also to fertilize the ground. In spite of its numerous advantages,

<<geographic>>

Sewage_Sludge_Parcel
{geoTypeConstraint=polygon}

id: Integer

spreading_date: Date

quantity: Double

geometry: Bag(BasicGeoType)

id: Integer

date_of_the_1st_spreading: Date

surface: Double

geometry: Bag(BasicGeoType)

<<geographic>>

Analysis
{geoTypeConstraint=point}

id: Integer

analysis_date: Date

geometry: Bag(BasicGeoType)

<<geographic>>

Town
{geoTypeConstraint=polygon}

postal_code: Integer

name:String

geometry: Bag(BasicGeoType)

<<geographic>>

Farm
{geoTypeConstraint=point XOR

polygon MULT (1..*)}

id: Integer

main_farmer: String

buildings_number: Integer

geometry: Bag(BasicGeoType)

<<geographic>>

Allowed_Spreading_Parcel
{geoTypeConstraint=polygon} <<geographic>>

Spreading_Area_Of_A_Town
{geoTypeConstraint=polygon MULT (1..*)}

id: Integer

geometry: Bag(BasicGeoType)

0..*

1..1 1..11..*

<<geographic>>

Waterway
{geoTypeConstraint=polyline}

id: Integer

geometry: Bag(BasicGeoType)

1..1

0..*

0..1

0..*

0..*

0..1

1..1

0..1

receive

are_spread_on

spread

are_spread_by

analysis_on_spreading_areas

are_analyzised

analysis_on_waterways

in_town

spreading_areas

are_analyzised

<<geographic>>

Lake_Part
{geoTypeConstraint=polygon}

id: Integer

geometry: Bag(BasicGeoType)

0..*

0..1analysis_on_lakes

are_analyzised

Fig. 4. Example of Sewage Sludge Spreading

166 F. Pinet, M.-A. Kang, and F. Vigier

the sewage sludge spreading must be monitored in order to avoid ground and
waterway pollution. Indeed, too intensive practices could lead to an environmental
deterioration. This could affect: a) areas that are close to the location where sewage
sludge has been spread, and b) extended areas including hydrographical networks.
This is the reason why a specific regulation has been defined e.g. for each town,
allowed spreading areas must be defined in order to indicate precisely where sewage
sludge could be spread without risk. To facilitate the monitoring of these activities,
farms have to record areas where spreading had finally been carried out. The
concentration of sewage must also be carefully monitored and governmental
institutions usually organize ground and water analysis in different locations (lake,
river,spreading area...).

The UML diagram of figure 4 corresponds to the modelling of object classes
related to the implementation of sludge spreading monitoring inside a geographic
information system. Farmers gradually spread sewage sludge inside "allowed
spreading parcels" and at each farmer intervention, a new "sewage sludge parcel" is
created; this parcel corresponds to a new area that received sludge. Thus, day after
day, allowed spreading parcels are progressively covered by several sewage sludge
parcels. Each instance of the "spreading area of a town" (SAT) class stores the
"allowed parcels" aggregation of a town. Thus, for a town t, the geometry of a SAT
is a bag including all the allowed parcel geometries occurring inside t. We also
consider in this diagram two categories of analysis: a) water analysis of lakes and
waterways, b) ground analysis of allowed parcels.

Sewage sludge
parcels: areas in
which sewage
sludge has been
spread. Each
sewage sludge
parcel corresponds
to a step of the
spreading

Allowed
spreading
parcels: areas in
which spreading
is allowed

Spreading areas
of a town:
aggregation
implying all
allowed spreading
parcels of a same
town

aggregation

Waterway

Water and
ground
analysis

Lake

Fig. 5. Map Representation of Sewage Sludge Example

 Spatial Constraint Modelling with a GIS Extension of UML and OCL 167

In the diagram, the geographic types are specified thanks to the stereotypes and
the tagged values presented in this paper. Spatially speaking, a farm is a point or a
set of polygons (each polygon is a building of the farm), depending on geographical
representations available in the information system. Thus, geometry attribute values
of the farm class are bags that include only one point or from one to several
polygons. A sewage sludge parcel or an allowed spreading parcel is one polygon
while each SAT geometry is a bag that can include several polygons (i.e. all allowed
parcels geometries of a town). The spatial representation of a town is its
geographical frontier. Waterways and lake parts are respectively modelled by
polylines and polygons. The geographical location of an analysis is described by a
point. The classes of the diagram are linked by classical UML associations according
to natural structural relationships existing between objects in the information system.

In order to facilitate the understanding of this technical case study, figure 5
illustrates considered geographical objects on a map.

3 Extending OCL for Topological Constraint Expression

3.1 Introduction to OCL

The Object Constraint Language provides a framework for precisely defining
constraints on a UML model in a formal way. OCL is textual and integrates several
concepts issued from classical object-oriented languages. In the context of
information systems, an important advantage of OCL is related to the fact that
constraints are expressed at a conceptual level. OCL is used to specify invariant i.e. a
condition that "must be true for all instances of a class at any time" [15].

In the following of the paper, we will consider that the information system in
which the UML diagram of figure 4 will be implemented, will store only "good
spreading practices". Thus, in order to illustrate OCL, different constraints defining
the acceptable agricultural practices will be presented. For example, the following
constraint requires that the surface area of allowed spreading parcels must be strictly
greater than 100 square meters.

context Allowed_Spreading_Parcel inv:
 self.surface > 100

In this example, self is an instance of the Allowed_Spreading_Parcel class

i.e. the class declared in the "context". OCL constraints must be "true" for each
instance (i.e. each self) of the class specified in the "context".

More complex constraints can be built by using navigations along the associations
between classes. In figure 4, an UML association is used in order to link sewage
sludge parcels with the allowed spreading parcels receiving them. The next
constraint illustrates the use of navigation in OCL by defining that the
date_of_the_1st_spreading attribute of allowed parcels that are associated to
sewage sludge parcels must be different from null.

168 F. Pinet, M.-A. Kang, and F. Vigier

Thus, self notation represents an instance of the Sewage_Sludge_Parcel
class and the expression "self.Allowed_Spreading_Parcel" returns the
Allowed_Spreading_Parcel instance associated to self by the relationship
"receive … are spread on".

context Sewage_Sludge_Parcel inv:
 self.Allowed_Spreading_Parcel.date_of_the_1st_spreading< >''

As exemplified in the next constraint, names of association ends can also be used

to navigate between classes; the semantics of this constraint is similar to the previous
one.

context Sewage_Sludge_Parcel inv:
 self.are_spread_on.date_of_the_1st_spreading< >''

OCL provides several other functionalities for the definition of complex invariants.

For example, the next expression specifies the following invariant: "the sum of
sewage sludge quantities that are spread on an allowed parcel cannot exceed 100 units
per square meter".

context Allowed_Spreading_Parcel inv:
 (self.Sewage_Sludge_Parcel.quantity->sum()/self.surface)<=100

The OCL expression "self.Sewage_Sludge_Parcel.quantity->sum()"

provides the sum of quantities related to sewage sludge parcels that are associated to
an allowed spreading parcel.

The next constraint means that an analysis must concern only one of these
elements: one allowed spreading parcel, one waterway or one lake part. Note that
"self.C->size()" provides the number of instances that are returned by the
navigation "self.C".

context Analysis inv:
 (self.Allowed_Spreading_Parcel->size() + self.Waterway->size() +
 self.Lake_Part->size()) = 1

The allInstances construct can be applied on a class C; it returns the collection
of all instances of C. Universal and existential quantifiers are denoted in OCL by
forAll and exists. In the OCL syntax, allInstances, forAll and exists are
prefixed operators. Logical implication can be also expressed by implies. The next
constraint exemplifies these functionalities by specifying that each town has a proper
postal code. Let t and self be two towns. If t and self are not the same town then
their postal code must be different.

context Town inv:
 Town.allInstances->forAll(t|

t< >self implies t.postal_code< >self.postal_code)

 Spatial Constraint Modelling with a GIS Extension of UML and OCL 169

3.2 OCL Extension Definition

Among the range of spatial relations, this paper focuses more precisely on topological
relations. To adapt OCL, new basic types are added, as presented in figure 6. The
model of the figure extends a part of the OCL meta-model defined by [14]. Note that
instances of classes in this meta-model are the types themselves, not instances of the
domain they represent. Thus, three new basic geographic types generalized by
BasicGeoType are added and each new type corresponds to a simple geographic
type. In fact, each geometry attribute value (see section 2.2) is a bag of elements and
each element in the bag has a BasicGeoType (i.e. point, polyline or polygon).

In order to describe topological constraints, new OCL operations are defined. In
this paper, relations underlined by Egenhofer [4] have been chosen in order to
illustrate our extension: overlaps, contains, is inside, are adjacent, covers, is covered,
are disjoint, are equal. Each of these relations is considered between a pair of simple
geometries (point, polyline, polygon). In some cases, it is possible to check
topological relations between two simple geometries having a different type (for
example between a point and a polygon). Figure 7 emphasizes the semantics of
Egenhofer relations with two polygons.

The proposed OCL extension introduces eight operations for checking the
described relations; one operation for each topological relation. These operations can
appear in OCL expressions and can be applied between objects having the type
BasicGeoType or the type Bag(BasicGeoType) i.e. the type "bag of elements that
have a BasicGeoType". These operations are described in table 1 and the generic
algorithm used for checking a topological constraint is defined in figure 8. Objects
having a geometry attribute value equal to null are simply ignored by the algorithm.
Indeed, null values often correspond to undefined or unknown data, and it seems
preferable that this specific information doesn’t negatively influence the topological
constraint checking.

OCLBasicType

<<singleton>>

Integer
<<singleton>>

Real
<<singleton>>

String
<<singleton>>

Boolean BasicGeoType

<<singleton>>

Point
<<singleton>>

Polyline
<<singleton>>

Polygon

Fig. 6. New OCL Basic Types (point, polyline and simple polygon)

Concretely, the topologic operations presented in table 1 can have as parameters
the geometry attribute (type Bag(BasicGeoType)) or one element of the
geometry attribute (type BasicGeoType in the case of a geometry composed by
several elements i.e. several parts). It is important to note that as presented in figure 8,
if a parameter has the type Bag(BasicGeoType) and if its size is >1 then the

170 F. Pinet, M.-A. Kang, and F. Vigier

operations return systematically false; in other words, we only allow topological
relations between pairs of simple element.

overlaps are adjacentcontains/is inside are disjoint are equalcovers/is covered

Fig. 7. Exemplification of Egenhofer Topological Relations with two Polygons

Table 1. New OCL operations for checking topological constraints

Operations Description

g1->overlaps(g2)
g1->contains(g2)
g1->isInside(g2)
g1->areAdjacent(g2)
g1->covers(g2)
g1->isCovered(g2)
g1->areDisjoint(g2)
g1->areEqual(g2)

We define that g1 and g2 are the parameters of the
operations. The type of g1 and g2 is BasicGeoType or
Bag(BasicGeoType). These operations return true or
false (a boolean) depending on whether the topological
relation between g1 and g2 is true or false. The generic
definition of the operations is described in figure 8.

Furthermore, elements of the geometry attribute can be accessed thanks to the
standard OCL operations used on bags (forAll, exists, select, reject…).
Indeed, these operations can be directly applied on geometry attributes.

For example, "for each element e in the geometry attribute value" is written as
"geometry->forAll(e|…)". The type of geometry is Bag(BasicGeoType) and
the type of e is BasicGeoType.

input: g1 and g2
output: true or false
//The topological relation can only be checked between two simple
//geometries. If g1 or g2 is a bag then it must contain only
//one element.
if (the type of g1 is Bag(BasicGeoType) and (size of g1)>1) or

(the type of g2 is Bag(BasicGeoType) and (size of g2)>1)
then return false;
else {
//The topological relation is always true if one bag is empty.

if (the type of g1 is Bag(BasicGeoType) and (size of g1)=0) or
 (the type of g2 is Bag(BasicGeoType) and (size of g2)=0)

then return true;
 else { if the potential type difference between

the simple geometries to compare
doesn’t allow the topological relation checking
then return false;

 else {
if the topological relation is
true between g1 and g2 then return true;

 else return false; } } }

Fig. 8. Generic algorithm used by operations for checking if a topological relation is true or false

 Spatial Constraint Modelling with a GIS Extension of UML and OCL 171

3.3 Spatial OCL in Practice

Thanks to some practical examples in the domain of agricultural information systems,
this subsection points up the possibilities offered by the proposed OCL extension.
This part of the paper continues the modelling of constraints based on figure 4 and
related to "good agricultural practices".

Spatial constraints between instances of different classes. The next invariant
defines that the geometry of sewage sludge parcels is inside the geometry of
associated allowed parcels. The spatial relations "contains" and "covers" are used
between the geometry attribute of geographic classes. The constraint presents a
navigation from sewage sludge parcels to allowed spreading parcels and specifies that
the "alphanumeric" association "receive … are spread on" existing in the
information system between these two different types of parcels must imply
containment or covering.

context Sewage_Sludge_Parcel inv:
 self.Allowed_Spreading_Parcel.geometry->contains(self.geometry)
 or
 self.Allowed_Spreading_Parcel.geometry->covers(self.geometry)

In the same way, the next constraint concerns the spatial containment of ground

and water analysis inside lakes, waterways or allowed spreading parcels.

context Analysis inv:
 self.Allowed_Spreading_Parcel.geometry->contains(self.geometry)
 or
 self.Lake_Part.geometry->contains(self.geometry)
 or
 self.Waterway.geometry->contains(self.geometry)

The invariant "lakes and spreading parcels are disjoint" can be defined by the

following clause. Unlike the previous constraint, this expression concerns all
instances of two classes independently of an association between them. For each
Allowed_Spreading_Parcel instance (denoted by self) and for each
Lake_Part instance (denoted by lp), the geometry of self must be disjoint from the
geometry of lp. Remember that in OCL, a constraint must be satisfied for each
instance self. Thus, a "forAll(self|…)" is implicitly applied on the set of
Allowed_Spreading_Parcel instances.

context Allowed_Spreading_Parcel inv:
 Lake_Part.allInstances()->forAll(lp|
 lp.geometry->areDisjoint(self.geometry))

Spatial constraints between instances of a same class. While previous examples
underline topological relations between instances of different classes, the next OCL
expression explores the possibility to declare spatial constraints on two instances of a
same class. This example indicates that all allowed spreading parcels must be
geographically disjoint.

172 F. Pinet, M.-A. Kang, and F. Vigier

context Allowed_Spreading_Parcel inv:
 Allowed_Spreading_Parcel.allInstances()->forAll(asp|
 asp.id< >self.id

 implies
asp.geometry->areDisjoint(self.geometry))

Spatial constraints implying sub-elements of geometry attributes. As presented in
the section 3.2, because the value of geometry attribute is a bag, the different
elements of this attribute can be accessed thanks to the standard OCL operations used
on bags (forAll, exists, select, reject…). The next example illustrates this
possibility. The geometry of a SAT is the aggregation of all allowed spreading parcels
related to a same town. Each SAT corresponds to a specific town. All
Allowed_Spreading_Parcel instances defined in a same town are associated to
the same Spreading_Area_Of_A_Town instance (see aggregation relationship
presented in the diagram of figure 4). The geometry value of a SAT is a bag
including the geometries of the associated Allowed_Spreading_Parcel instances.
The next constraint shows that all elements of this bag must be spatially disjoint. The
type of the geometry attribute is Bag(BasicGeoType) and consequently, the type
of p1 and p2 is BasicGeoType.

context Spreading_Area_Of_A_town inv:
 self.geometry->forAll(p1,p2|
 p1< >p2 implies p1->areDisjoint(p2))

The farm geometry is a bag containing one point or from one to several polygons

(depending on the representation available in the information system). This last
constraint means that if a farm is represented by polygons then the
buildings_number attribute must be equal to the number of elements composing
the geometry attribute of the Farm object (i.e. the number of buildings composing
the farm). In the example, the prefixed OCL operation select(cond) returns all
elements of the geometry attribute value that satisfy the condition cond. Note that
the OCL oclIsKindof function checks if the type of the element t is Polygon.

context Farm inv:
 self.geometry->select(t| t.oclIsKindof(Polygon))->size() > 0

 implies
self.buildings_number = self.geometry->size()

4 Conclusion and Perspectives

In our work, we have naturally chosen UML and OCL because these languages
became standard methods to model information systems. Firstly, we propose a
complete formalism of concepts related to geographical type constraints. Secondly,
existing UML-based formalisms only allow a topological constraint representation by
relationships; thus, by integrating topological operations to OCL, we propose a
language for expressing complex spatial constraints. Also, as presented in section 3,

 Spatial Constraint Modelling with a GIS Extension of UML and OCL 173

the application of OCL operations like forAll, select, or size on the geometry
attribute provides very precise constraint expressions on bags of geometries.

Thus, our work aimed at improving UML models thanks to geographical type
constraints and topological constraints. In using the proposed formalism, when the
designer writes the system specifications, the visual representation of geographic data
illustrated in figure 5 becomes unnecessary because all spatial features are directly
declared in UML diagrams and in OCL expressions.

Egenhofer topological relations have been used in our design of agricultural
information systems but the proposed OCL extension can be easily adapted to new
spatial relations (e.g. metric relations) in order to meet other domain needs. In this
case, the GIS designer simply has to give the semantics of the new topological
relations for pairs of geometries. As discussed in the following subsections, two main
research perspectives will be studied regarding future work.

4.1 Perspective 1: Automatic Generation Inside GIS

An important challenge is to reduce the gap between the conceptual description of
constraints and their implementation inside a GIS. This is the reason why we are
interested in setting up a generator dedicated to the automatic generation of triggers
from spatial OCL constraints.

In order to achieve this aim, we currently investigate the possibility to extend an
existing tool named OCL2SQL in order to produce a mechanism for integrity
checking in geographical databases. The open source OCL2SQL program is a
powerful generator developed by [2], [3]; it offers the capability to generate
automatically from an OCL expression c, a SQL query selecting all data that don’t
satisfy c. Once integrated inside a trigger (on data insertion, deletion and update), the
query provides guards that guarantee the consistency of databases. Indeed, during
each data update, the trigger checks if the generated SQL query returns tuples; if it’s
not the case then the update is accepted, else data modification is rejected. By this
technique, it becomes, for example, impossible to insert data that violate a constraint.

We started to partially include our spatial extension to OCL2SQL by adding the
new proposed OCL syntax and by studying the automatic generation for the Spatial
SQL supported by Oracle Spatial. The next example illustrates a possible conversion
of an OCL expression into Spatial SQL.

OCL constraint:
context Allowed_Spreading_Parcel inv:
 Allowed_Spreading_Parcel.allInstances()->forAll(asp|
 asp.id< >self.id

 implies
asp.geometry->areDisjoint(self.geometry))

Spatial SQL clause selecting data that don’t satisfy the OCL constraint:
SELECT * FROM Allowed_Spreading_Parcel self
WHERE EXISTS
((SELECT id FROM Allowed_Spreading_Parcel)

MINUS

174 F. Pinet, M.-A. Kang, and F. Vigier

 (SELECT id FROM Allowed_Spreading_Parcel asp
WHERE asp.id=self.id OR
 MDSYS.SDO_RELATE(asp.geometry, self.geometry,
 'mask=DISJOINT querytype=WINDOW')='TRUE'))

As illustrated by this example, Spatial OCL is an excellent alternative to write
triggers. Without the use of OCL, the direct writing of queries associated to triggers
seems to be a difficult task because the first role of SQL is not to model constraints
but to select data; this explains the absence of the forAll notation in SQL whereas
this notation can be directly used in OCL.

The desired architecture is schematized in figure 9. The new version of OCL2SQL
will take as parameters: a) files containing spatial constraints, b) a XMI file
corresponding to the UML conceptual schema of the database.

In the future, it could be also possible to consider automatic generation for other
GIS target platforms.

Other complementary researches at Cemagref are also directed towards the
generation of logical models from UML diagrams improved by stereotypes for the
geographic type description [10].

Spatial OCL to SQL Generator

Spatial OCL constraints UML Class Diagram (XMI)

Triggers for Oracle
Spatial – Used to

check automatically
constraints

Fig. 9. Spatial OCL to SQL Generator

4.2 Perspective 2: Definition of More Complex Spatial Relations

Finally, we also study the modelling of constraints that imply more complex spatial
relations; for example spatial relations on more than two simple geometries. A
possibility could be to use Spatial OCL as a meta-"constraint language" in order to
define precisely other relations. In this case, complex spatial relations could be
formalized directly with Spatial OCL and their OCL definition could be associated to
a function name with different parameters. Then the new functions could be used by
designers in other OCL constraints. This research topic is closely linked to the
knowledge of the Spatial OCL expressive power.

 Spatial Constraint Modelling with a GIS Extension of UML and OCL 175

References

1. Brodeur J., Bédard Y., Proulx M.J.: Modelling Geospatial Application Databases using
UML-based Repositories Aligned with International Standards in Geomatics. Proc. of the
Int. ACM Symposium on Advances in Geographic Information Systems, USA (2000) 39-
46

2. Demuth B., Hußmann H., Loecher S.: OCL as a Specification Language for Business
Rules in Database Applications. Proc. of the Conference on the Unified Modelling
Language, USA (2001) 104-117

3. Demuth B., Hußmann H.: Using UML/OCL Constraints for Relational Database Design.
Proc. of the Conference on the Unified Modelling Language, USA (1999) 598-613

4. Egenhofer M., Franzosa R.: Point-Set Topological Spatial Relations. Int. Journal of
Geographical Information Systems, Vol.5(2). (1991) 161-174

5. Friis-Christensen A., Tryfona N., Jensen C.: Requirements and Research Issues in
Geographic Data Modeling. Proc. of the Int. ACM Symposium on Advances in
Geographic Information Systems, USA (2001) 2-8

6. Kösters G., Pagel B., Six H.: GIS-Application Development with GeoOOA. Int. Journal of
Geographical Information Science, Vol.11(4). (1997) 307-335

7. Laurini, R.: Information Systems for Urban Planning. Taylor & Francis (2001) 308p
8. Lbath A., Pinet F.: Towards Conceptual Modelling of TeleGeoProcessing Applications.

Proc. of the Int. Symposium on TeleGeoProcessing, France (2000) 25-39
9. MapInfo Corporation: MapInfo Professional user’s guide, USA (2003)

10. Miralles A.: GIS Profile for Objecteering. Cemagref (2004)
11. OMG: Unified Modeling Language. OMG Specification (2001) 556p
12. Parent C., Spaccapietra S., Zimanyi E.: Spatio-Temporal Conceptual Models: Data

Structures + Space + Time. Proc. of the Int. ACM Symposium on Advances in Geographic
Information Systems, USA (1999) 26-33

13. Pinet F., Lbath A.: Semantics of Stereotype for Type Specification: Theory and Practice.
Proc. of the Int. Conference on Conceptual Modeling (ER’01). Lecture Notes in Computer
Science Vol.2224. Springer Verlag, Japan (2001) 339-353

14. Richters M., Gogolla M.: A Metamodel for OCL. Proc. of the Conference on the Unified
Modelling Language, USA (1999) 156-171

15. Schmid B., Warmer J., Clark T.: Object Modeling With the OCL: The Rationale Behind
the Object Constraint Language. Springer Verlag (2002) 281p

Appendix: Semantics of Geographical Type Constraints

A.1 Notations

A set is denoted by {element1 , … , elementn}. In a set, any element can be represented
only once. A bag is denoted by Bag{element1 , … , elementn}. A bag is similar to a set,
but it can contain duplicate element. The empty bag is Bag{}. The merge of bags is
allowed by using the union operator. For example, Bag{a,b} ∪ Bag{b,c} ∪ Bag{} =
Bag{a,b,b,c}. The bag combination operation (denoted by ×) is a concept inspired by
the cross-product; it provides the capability for combining sets of bags. Let S1 and S2
be two sets of bags, S1 × S2 = { Bagi ∪ Bagj | Bagi ∈ S1 and Bagj ∈ S2 }. For example,
{ Bag{a,b}, Bag{c} } × { Bag{c}} = { Bag{a,b,c}, Bag{c,c} }. The bag combination

176 F. Pinet, M.-A. Kang, and F. Vigier

operation is associative. Also, because the bag is an unordered collection, this
combination operation on sets of bags is commutative. S n is the bag combination
operation of S with itself n times; if applied to a set of bags, S 0 = {Bag{}} ; S 1 = S ;
S 2 = S × S ; S 3 = S × S × S ; ...

A.2 Semantics

The semantics of a geographical type constraint associated to a class C can be
described by the value domain related to the geometry attribute of C. A value
domain of a geometry attribute is a set of bags and consequently, the value of a
geometry attribute is a bag. Dom(point), Dom(polyline) and Dom(polygon) are
respectively the infinite sets of points, polylines and polygons. For example,
Dom(polygon) is the set of all the polygons that can be defined i.e. all possible
polygons.

More precisely, we define that:

Dom(point) = { Bag{point1} , Bag{point2} , … , Bag{pointi} , … }
Dom(polyline) = { Bag{polyline1} , Bag{polyline2} , … , Bag{polylinei} , …}
Dom(polygon) = { Bag{polygon1} , Bag{polygon2} , … , Bag{polygoni} , … }

Definition 1

Let DomMult be a function that applies a multiplicity ‘min..max’ to a set of bags S:

DomMult (S , ‘min..max’) = S min ∪ .. ∪ S k ∪ .. ∪ S max with min≤k≤max

For example, DomMult (Dom(polygon) , ‘0..2’) applies the multiplicity ‘0..2’ to
the set of possible polygons.

DomMult (Dom(polygon) , ‘0..2’)

= Dom(polygon)0 ∪ Dom(polygon)1 ∪ Dom(polygon)2

= { Bag{} } ∪ { Bag{polygon1},…, Bag{polygoni},… } ∪
 ({ Bag{polygon1},…, Bag{polygoni},… } ×
 { Bag{polygon1} ,…, Bag{polygonj},… })

= { Bag{}, Bag{polygon1},…, Bag{polygoni},… ,
 Bag{polygon1, polygon1},…, Bag{polygoni, polygonj},… }

Intuitively, the application of the multiplicity ‘0..2’ on Dom(polygon) returns

the value domain composed of bags that contain from 0 to 2 polygons.

 Spatial Constraint Modelling with a GIS Extension of UML and OCL 177

Definition 2

Let TC be the infinite set of all type constraints i.e. the infinite set that contains all
possible values of the geoTypeConstraint tag. We will define the function DomTC
that associates a type constraint to its value domain. The function DomTC is
defined by:

R1. DomTC(r) = Dom(r) if r ∈ {point, polyline, polygon}
R2. DomTC(r AND s) = DomTC(r) × DomTC(s)
R3. DomTC(r XOR s) = DomTC(r) ∪ DomTC(s)
R4. DomTC(r MULT m) = DomMult(DomTC(r), m)

DomTC provide the semantics of type constraints i.e. the corresponding value
domains. Let r, s be two type constraints included in TC; r and s have exactly the
same semantics iff DomTC(r) = DomTC(s). The function DomTC decomposes the value
domain of a constraint into combination operations and unions of bags that contain
only one element. While the bag combination operation corresponds to a conjunction
between value domains, the union is a disjunction of value domains.

For example,

DomTC ((point XOR polygon) AND polygon AND
(polyline MULT (0..2)))

= (Dom(point) ∪ Dom(polygon)) × Dom(polygon)
 × (Dom(polyline)0 ∪ Dom(polyline)1 ∪ Dom(polyline)2)

= ({Bag{point1}, … , Bag{pointi}, …} ∪ {Bag{polygon1}, … , Bag{polygonj},…})
 × {Bag{polygon1}, … , Bag{polygonj}, …}
 × ({Bag{} ∪ {Bag{polyline1}, … , Bag{polylinep}, …}
 ∪ {Bag{polyline1, polyline1}, … , Bag{polylinep , polylineq}, …})

= { Bag{ point1 , polygon1}, … , Bag{ pointi , polygonj}, … ,

 Bag{ polygon1 , polygon1}, … , Bag{ polygonj , polygonk}, … ,
 Bag{ point1 , polygon1 , polyline1}, … , Bag{ pointi , polygonj , polylinep}, … ,

 Bag{ polygon1 , polygon1 , polyline1}, … ,
 Bag{ polygonj , polygonk , polylinep},…,

 Bag{ point1 , polygon1 , polyline1 , polyline1}, … ,
 Bag{ pointi , polygonj , polylinep , polylineq}, … ,
 Bag{ polygon1 , polygon1 , polyline1 , polyline1}, … ,
 Bag{ polygonj , polygonk , polylinep , polylineq}, … }

According to the previous type constraint, the value of a geometry attribute must

include:
− (one point and one polygon)
− or (two polygons),

178 F. Pinet, M.-A. Kang, and F. Vigier

− or (one point and one polygon and one polyline),
− or (two polygons and one polyline),
− or (one point and one polygon and two polylines),
− or (two polygons and two polylines).

Two type constraints that are syntactically different can have exactly the same

semantics. For example, this is the case for the next type constraints. The function
DomTC allows to determine the semantics equivalence.

geoTypeConstraint1=
(point MULT(0..1)) AND ((polygon XOR point) MULT(0..1))

geoTypeConstraint2=
((point MULT(0..1)) AND (polygon MULT(0..1)))
XOR (point MULT(0..2))

Thus, DomTC (geoTypeConstraint1) = DomTC (geoTypeConstraint2)

= { Bag{}, Bag{ point1 }, … , Bag{ pointi }, … ,
 Bag{ polygon1}, … , Bag{ polygonj}, … ,
 Bag{ point1 , point1}, … , Bag{ pointi , pointj}, … ,
 Bag{ point1 , polygon1}, … , Bag{ pointi , polygonj}, … }

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 179 – 191, 2004.
© Springer-Verlag Berlin Heidelberg 2005

Location and Tracking Services for a Meta-UbiComp
Environment

Antonio Coronato1 and Giuseppe De Pietro2

1 DRR-CNR, Via Castellino 111, 80131 Napoli, Italy
coronato.a@ na.drr.cnr.it

2 ICAR-CNR, Via Castellino 111, 80131 Napoli, Italy
depietro.g@cps.na.cnr.it

Abstract. Current prototypes of UbiComp environments are bounded to a
physical site equipped with a WLAN. However, next generation of UbiComp
environments will have to aggregate different physical sites, spread over a wide
geographic area, each one equipped with an own WLAN, and interconnected by
the internet. The emerging model is a meta-environment that integrates different
physical environments. It must provide users with a uniform interaction model
independently from the physical site they are in. Clients, active in a site, have to
get access only to services available in that site. Moreover, users, who move
from one site to another one, must have the possibility of suspending their
computations before leaving the site and of resuming them once in the new site.
These needs call for advanced location and tracking services. This paper
presents a location and tracking service for meta-UbiComp environments. The
location function is in charge of determining mobile clients active inside the
meta-environment, at every time, in every physical site. Mobile users get access
only to services available in the physical site they are in. In addition, users are
tracked, and the environment automatically reconfigures itself when they move
from one location to another one, or when they definitively leave the
environment. This makes the environment able to reliably handle resources
and services.

1 Introduction

Technology evolution in hardware design and development (including
microprocessors, network bandwidth, and wireless devices), which has led to a
dramatic improvement in terms of performance to cost ratio and of the integration
scale factor, is leading towards the implementation of the Mark Weiser vision [1].
The emerging computing model is called Ubiquitous Computing (UbiComp).
Ubiquitous Computing inherits characteristics from the Mobile Computing [2],
which is fundamentally related to accessing computing services independently
from physical user movements. However, the concept of Ubiquitous Computing
extends the model of Mobile Computing with an interaction model which allows
the device to i) receive information from the environment about available services,
ii) dynamically configure end-points for existing services, and iii) build new

180 A. Coronato and G. De Pietro

services, which are to be customized according to specific user needs, as well as to
environment and device specific characteristics.

The ultimate goal is the development of environments where highly heterogeneous
hardware and software components can seamlessly and spontaneously interoperate, in
order to provide a variety of services to users independently of the specific
characteristics of the environment and of the client devices [4]. Therefore, mobile
devices should come into the environment in a natural way, as their owner moves, and
transparently, that is owner will not have to carry out manual configuration operations
for being able to approach the services and the resources.

Current realizations of Ubiquitous Computing environments are characterized
by being bounded to a unique physical site [11][12][13]. Such environments are
participated by a set of users, hardware, and software components, which is highly
dynamic and cannot be predicted in advance. As a consequence, the sudden
departure or arrival of a service, device, or user should be considered normal
operation, not an exceptional condition or a failure requiring special handling [5].
This characteristic calls for location and tracking mechanisms. Such a need is
extremely exacerbated for the next generation of UbiComp environments. Indeed,
the Ubiquitous Computing model has to scale to large enterprises, which might
have different offices distributed over a wide area, in different physical sites. In
that case, the environment has to offer a unique interaction model to its users. In
particular, users should access to the same set of services independently on the
site, with the same interface. Services that require resources not available in all
physical sites should be accessed only in those sites where the required resources
are available. Moreover, users should be able to suspend their computation in a site
and to resume it from a different one.

This requires base services for determining mobile users in the environment and
their location. In addition, the environment must be able to track user movements.
As a matter of fact, when a user is no longer active in a site, it is possible that
he/she has definitively left the environment, or his/her device has failed, or he/she
has left the physical site to reach another site, or more simply he/she has turned off
his/her device to save battery or to have a break. Actually, since active devices
affect the environment in terms of in use/available resources and services, we can
conclude that the environment must reliably handle resources and services when
users move around. It must be able to predict whether the user will require to
resume its computation later or not. Then, active resources must be kept allocated
or freed.

This paper describes the implementation of a dependable location and tracking
service for a Meta-UbiComp Environment, that is a logic environment composed
by different physical sites (i.e. local environment). From now on, with the term
environment we will refer to the concept of meta-environment. It is also worth to
clarify that as location system, we mean a mechanism able to detect active devices
in a particular location at every time [3], and we identify a location with a physical
site equipped with wireless access points; thus, we are not interested in active
location systems (like those presented in [6]) that provide information about the
position of a device within a physical site. The location information are used to

 Location and Tracking Services for a Meta-UbiComp Environment 181

track user movements. Then, higher level functionalities infer the user intentions
depending on his/her movements inside the environment and on the services he/she
has activated. Finally, specific strategies are presented to make the environment
able to reliably handle resources and services while users move inside the
environment.

The rest of the paper is organized as follows. Section 2 presents the target scenario.
Section 3 describes the location and tracking services. Section 4 presents the services
architecture. Section 5 concludes the paper.

2 Meta-UbiComp Environments

General Model

The physical model of a Meta-UbiComp environment is shown in figure 1. The
environment consists of several sites (local environments) interconnected each
other via the internet. Every site is equipped with wireless access points and other
resources. Several user services are available in the environment. Table 1 shows an
example of services availability for the different physical sites of the environment.
A service is available in a specific site if the resources it requires are available
there; or it runs in a different site, but it can present results in other sites.

Site 1 Site 2 Site N

Internet

R3R1 R2 R2 R4 R1 R2 Rz

S1 S2 S2 S1 Sk

Resources

Services

Site 1 Site 2 Site N

Internet

R3R1 R2 R2 R4 R1 R2 Rz

S1 S2 S2 S1 Sk

Resources

Services

Fig. 1. Wide area UbiComp model

Table 1. Services availability

Service Required resources Availability

S1 R1, R2 Site1, Site N

S2 R2 Site 2

Sk Rz Site N

182 A. Coronato and G. De Pietro

A Real Meta-environment

The real environment we analyze consists of two sites. Site 1 is located in Naples. It is
equipped with a printer and other resources. Site 2 is located in a suburb quarter, a
few kilometers far from site 1. It is equipped with a multimedia laboratory and some
multimedia rooms. In particular, the following resources are available:

• Motion Capture System – This is a system for capturing human motions.
It consists of several cameras, which capture movements performed by an
actor, and a graphic station, which reproduces movements as a skeleton
accordingly with actor’s motions;

• Rendering Station – This is a workstation for rendering row motion data
in 3D graphic applications;

• Projector – This is a projector, driven by a pc, to project multimedia
presentations;

• Streaming Server – This server hosts a video streaming application;
• E-Testing Server – This server hosts an E-Testing application;
• Printers and other resources.

The environment supports the following application services:

• MotionCaptureService – This service drives the motion capture system.
An actor (equipped with optical markers) moves around in the
multimedia laboratory. Several cameras capture his movements that are
reproduced on a graphic station. The graphic station shows a skeleton,
which moves accordingly with the actor, and records data movement in a
file. This service must be available only in site 2 because it requires that
the actor move in the physical capture area of the system;

• RenderingService – This service enables users to submit row motion data
and to build 3D graphic applications. This is a computational service that
executes processes over the Rendering Station. However, it should be
available in both sites. Indeed, since computation doesn’t require user-
service interactions, user can submit the input row motion file and choose
the rendering options via a dialog form; successively, he/she can take up
the output rendered file at the end of the job. Thus, although computation
is performed by the rendering station, input file can be submitted from a
remote place;

• PresentationService – This service enables a user to project its
presentation in the multimedia room. The service receives a pdf/ppt file
via a dialog form and then enables speaker to control the presentation
flow. This is an interactive service, which requires the speaker to be in
the room for presentation. As a consequence, the service must be
available only in Site 2;

• VideoConferenceService – This service enables attendees to follow a
presentation on their personal mobile device. A video server captures a
presentation with its videocam and streams it over the network. The

 Location and Tracking Services for a Meta-UbiComp Environment 183

service isn’t interactive. Users receive presentation images, but do not
interact with the speaker. This service must be available in all sites;

• E-TestingService – This service enables to perform on-line evaluation
tests for courseware activities. When a session test starts, students must
be in the multimedia room. Evaluation tests are synchronized and
students have a predefined period of time for completing each test
section. Students can interrupt their test by explicitly closing the service
or by leaving the multimedia room. This service must be available only in
the multimedia room of site 2;

• PrintService – This service enables users to print their pdf documents.
This service must be available in both sites. However, the print service
must use the local printer of the site in which user requires printing.

Figure2 shows the environment, the allocated resources, and the available services.

Internet

R6 R7

S1S2 S3

Site 1 Site 2

R3

R2

R4

R1

R5 R6
R7

S2S4 S4 S5S6 S6

Resources
R1 Motion Capture System
R2 Rendering Station

R3 Projector
R4 Streaming Server
R5 E-Testing Server

R6 Printer
R7 Other resources

Services
S1 MotionCaptureService

S2 RenderingServices

S3 PresentationService

S4 VideoConferenceService

S5 E-TestingService
S6 PrintService

Internet

R6 R7

S1S2 S3

Site 1 Site 2

R3

R2

R4

R1

R5 R6
R7

S2S4 S4 S5S6 S6

Resources
R1 Motion Capture System

R2 Rendering Station

R3 Projector

R4 Streaming Server

R5 E-Testing Server

R6 Printer
R7 Other resources

Services
S1 MotionCaptureService

S2 RenderingServices

S3 PresentationService

S4 VideoConferenceService

S5 E-TestingService
S6 PrintService

Fig. 2. A real meta-UbiComp environment

We have already cited that users-environment interactions must take place
spontaneously.

In this scenario, with regard to activities and movements that a user can perform,
several events might occur. In particular, the following events can take place:

• a user appears in a site; this event occurs when the user enters in the
environment and a list of available services, for that site, must be
provided;

• a user disappears from a site; this event occurs when:
i. the user definitively leaves the environment;

ii. the user’s device temporarily or permanently fails;
iii. the user turns off his/her device to have a break or to save battery,

but he/she wants to resume computation later and/or in a different
location;

iv. the user moves through a "black" zone, that is an area of the
physical site not covered by wireless connectivity.

184 A. Coronato and G. De Pietro

Such events call for handling mechanisms. In fact, once a mobile user enters in a site,
the environment has to locate him/her and to provide the list of available services for that
site. Moreover, once a user disappears from a site, the environment has to infer whether
he/she is going to come back later or not. In other words, a user could disappear from a
site in the middle of a computation. Firstly, this event has to be recognized by the
environment. Then, the environment has to decide either to free allocated resources or to
keep them active in the environment. The decision must be taken depending on the
services activated by the disappearing user. In fact, with respect to our scenario, if a user
turns off his/her device after having submitted a row data file for rendering, probably
he/she will come back (reappear) in the environment to pick up results. Differently, if a
student gives up an evaluation test session, the environment has to free the allocated
resources because the student can not be admitted anymore to the same session. In
general, we can classify services in highly interactive services (HIS) and lowly
interactive services (LIS) (or computational). When a user interrupts a highly interactive
service, probably he/she will not come back to resume. Differently, if a user disappears
from the environment when computational services are running, probably he/she will
come back later to pick up results.

In our scenario, the services are classified as HIS or LIS as reported in table 2.

Table 2. User services availability

Service Required resources Kind of

Service

Availability

MotionCaptureService Motion Capture
System

HIS Site2

RenderingService Rendering Station LIS Site 1, Site 2
PresentationService Projector HIS Site 2
VideoConferenceService Streaming Server LIS Site 1, Site 2
E-TestingService E-Testing System HIS Site 2
PrintService Printer LIS Site 1, Site 2

3 The Location and Tracking Services

Location discovery mechanisms are not supported by traditional distributed
environments, which typically are not able to recognize user disconnections, or when
they do that, they always treat disconnections as system failures. Differently, modern
ubicomp environments must be equipped with location discovery systems. However,
earlier implementations limit the service responsibilities to identifying active objects
into a physical area or site.

Our location service is able to locate active mobile users in all the physical sites of
the environment. Most important, the location service has been coupled to a tracking
service, which enables the environment to infer user intentions and to reliably handle
allocated resources. Such services operate in a distributed environment, which is

 Location and Tracking Services for a Meta-UbiComp Environment 185

composed by two distinct sites, equipped with wireless access points, and
interconnected by the internet. Currently, the environment is not equipped with active
location systems like active badges or sensors.

In order to locate active devices and to reliably handle user disconnections, the
environment must be able to distinguish among the events reported in table 3.
Table 3 also reports main requirements for the environment in order to achieve
spontaneous and transparent interactions. Indeed, while Event 1 requires to provide
the incoming user with network connectivity, Events 2 to 5 require specific
disconnection strategies. Moreover, events 2 to 5 all manifest themselves
identically (the user’s device becomes unavailable in the environment); but, they
require different reactions of the environment. Indeed, events 2 and 3 require that
the allocated resources be freed, whereas, events 4 and 5 require that the allocated
resources continue to be active.

Therefore, the environment must support proper connection, disconnection, and
tracking strategies.

Table 3. Events and required behavior

 Event Required behavior

1 A new user comes into the
environment

The environment provides network
connectivity on-the-fly without any
manual configuration action

2 The user definitively leaves the
environment

The environment frees allocated
resources

3 The user’s device definitively fails The environment frees allocated
resources

4 The user’s device temporarily fails or
the user’s device is temporarily
unavailable in the environment

The environment temporarily
suspends computation and is ready to
resume

5 The user turns off his/her device to
have a break or to save battery, but
he/she wants to resume computation
later and/or from a different site

The environment saves computation
state and let user to resume later

Connection Strategies

The mechanism we chose for providing network connectivity on-the-fly is based
on the Dynamic Host Configuration Protocol (DHCP) [8], which is a well known
solution for the implementation of basic location functions [7]. DHCP dynamically
assigns an IP address to an incoming device, that is, then, able to access to the
network. This realizes the desired behavior for event 1 without making particular
assumptions about the client device, except that it must be DHCP enabled.
However, standard DHCP has not been devised for highly dynamic environments.
As a matter of fact, the IP address provided to the entering device is locked until

186 A. Coronato and G. De Pietro

the lease time expires. The lease time is a parameter that typically varies from 12
to 24 hours. During this time, standard DHCP doesn’t take care about possible
early user disconnections. Some limitations of the standard DHCP in mobile
computing were already pointed out in [9] and are only partially faced by the
forthcoming DHCP RFC [10] that introduces the possibility of forcing the mobile
device to renew the IP request once the lease time (for the old IP address) expires.
However, this isn’t enough for UbiComp environments. For this reason, some
additional functions must be developed. In particular, checkpointing activities
must be performed to recognize when devices are no longer active inside the
environment. Moreover, the DHCP must be able to release the network allocated
resources on-demand.

Disconnection Strategies

Events 2 to 5 in table 1 require disconnection strategies. In particular, such events
require specific behaviors for the environment, which must be able to distinguish
these events. To solve this problem, we classified services as Lowly Interactive
Services and Highly Interactive Services. This classification enables the
environment to infer the client status once its device is no more traceable into the
environment. In particular, in the case of a LIS active, if the user device becomes
unavailable, most likely event 5 occurred but, in any case, the strategy is to free
the IP address immediately and to continue computation until the results are
obtained, then a timer starts. Computational resources are freed as soon as the user
comes back to the environment and picks up results (figure 3.a) or the timeout
expires (figure 3.b).

Client LIS

operation

release

require_results

require_operation

Client LIS

require_operation

operation

timeout

release

(a) (b)

Client LIS

operation

release

require_results

require_operation

Client LIS

require_operation

operation

timeout

release

(a) (b)

Fig. 3. Disconnection strategies for Lowly Interactive Services

 Location and Tracking Services for a Meta-UbiComp Environment 187

HISCl ient

Perm anent
fault

timeout 1

suspende

Interaction 1

Interaction 2

Interaction N

timeout 2

release

Cl ient HIS

Cl ient

Transient
fault

timeout 1

Interaction 1

Interaction 2

In teraction N

suspende

Interaction N+1
resume

(a) (b)

HISCl ient

Perm anent
fault

timeout 1

suspende

Interaction 1

Interaction 2

Interaction N

timeout 2

release

Cl ient HIS

Cl ient

Transient
fault

timeout 1

Interaction 1

Interaction 2

In teraction N

suspende

Interaction N+1
resume

(a) (b)

Fig. 4. Disconnection strategies for Highly Interactive Services

Differently, in the case of an HIS active, once the user’s device gets unavailable,
event 5 can be exclude (generally, no student would turn off his device in the middle
of an evaluation test to have a break as well as no speaker would turn off his device
during his presentation to save battery). At this time, the service must stop itself and
wait for a timeout. If the user’s device reappears in the environment before the
timeout expires as in figure 4.a, likely event 4 occurred, whereas if the timeout
expires as in figure 4.b, event 2 or 3 is assumed. In the case of event 4, the HIS must
resume as the client gets available. In opposition, when event 2 or event 3 occurs,
allocated resources must be freed and the service must release. In figure 2, timeout1 is
the time the HIS must wait, once the user has got unavailable, before suspending
itself. Timeout2 is the time the HIS must wait before releasing itself after having
already suspended itself.

Tracking Strategies

Generally, a user could activate more than one service in a session. In order to track
user activities and movements, the state machine depicted in figure 5 can be adopted.
Such a state machine consists of states and macro-states.

188 A. Coronato and G. De Pietro

States:
• LIS – At least a LIS is operating. No HIS is active.
• BC_WAIT – The active LIS has completed its calculus and is waiting for

the client who picks up results.
• HIS – At least a HIS is active. No LIS is active.
• LIS_HIS – At least one HIS and one LIS are active.
• FC_WAIT – At least a HIS is active and all active LISs have completed

their calculus and wait for user who picks up results.

Macro-states:
• BackgroundComputing – In this macro state only LISs are active.
• ForegroundComputing – In this macro state at least a HIS is active.
• NoComputing – Neither LISs nor HISs are active.

client picks up results or LIS time out / release LIS components

ForegroundComputing

LIS_HIS

HIS

FC_Wait

LIS_HIS

HIS

LIS required

HIS required

NoComputing

BackgroundComputing

LIS BC_WaitLIS

LIS required

HIS required

LIS required

client unreachable or HIS completed / release HIS components

LIS/HIS required

LIS = Lowly Interactive Service

HIS = Highly Interactive Service
BC_Wait

FC_Wait

client unreachable or HIS completed / release HIS components

LIS completed

HIS required

LIS completed

LIS required

HIS required

LIS required

HIS completed or client unreachble

LIS timeout or client picks up result

Fig. 5. Client state machine

4 Implementation Details

We built a tracking service and a two-levels location service. The tracking service is
unique for all the sites of the environment. Differently, the location service is
composed by a global location service, which is unique for the environment, and
several site location services, one per site.

The services architecture is described in figure 6. It consists of the following
components:

• DHCPService – This component implements a DHCP service. It provides
network connectivity to the incoming devices as a standard DHCP, but it
has additional functionalities. In particular, it communicates to the
SiteLocationService when new devices are active in the site. Moreover, it

 Location and Tracking Services for a Meta-UbiComp Environment 189

can release allocated IP addresses on-demand. Such a characteristic
enables the TrackingService to require to free allocated network resources
when a disappearing user is supposed to definitively leave the
environment. Each site needs a local DHCPService.

• EcoService – This component implements ping functions in order to
establish which devices are still active in the site. The EcoService is
activated and deactivated by the TrackingService. Each site needs a local
EcoService.

• SiteLocationService – This component handles a list of devices active in
the site. It directly interacts with the GlobalLocationService and the
TrackingService. It also forwards messages, coming from the
GlobalLocationService and the TrackingService, towards the local
EcoService and the local DHCPService. Each site needs a local
SiteLocationService.

• GlobalLocationService – This component handles mobile devices
location in the environment. It interacts with SiteLocationServices for
having information about local positons, and with the TrackingService to
communicate changes of location.

• TrackingService – This component tracks users’ activities and
movements within the meta-environment. In particular, it handles a state
machine like the one depicted in figure 5 for each user. As a
consequence, this service infers user intentions and drives other services
to keep resources active or to free them.

Inter-site components interacts each other over a CORBA platform, whereas intra-

site components communicates over the internet using the SOAP protocol.
The application services, which we presented in section 2.2, support the interfaces

shown in figure 7. This makes possible the interaction of the services with the
location and tracking services.

When a new device comes into the environment, it dynamically obtains an IP
address from the DHCPService. The DHCPService communicates to the
SiteLocationService that a new device is active. The SiteLocationService activates
an Eco function for the new device, updates its internal data structures, and
communicates that a new device is active in its site to the GlobalLocationService,
which forwards this information to the TrackingService. The TrackingService
creates an instance of the state machine shown in figure 7 for the entering device,
and updates it accordingly with user requests.

When the device becomes inactive, the EcoService communicates such a condition
to the TrackingService, which requires to free allocated resources or to leave them
active depending on the user state. While in the ForegroundComputing or
NoComputing state, the TrackingService forces to free allocated resources. Whereas,
in the BackgroundComputing state, the TrackingService keep resources allocated.

190 A. Coronato and G. De Pietro

Site
Location
Service

SOAP/XML

Eco
Service

DHCP
Service

Global
Location
Service

Tracking
Service

Application
Services

….
Print

Rendering
….

CORBA ORB

Site 2

Site
Location
Service

SOAP/XML

Eco
Service

DHCP
Service

CORBA ORB

Site 1

Internet

Fig. 6. Services architecture

HIS_Interface

Time_To_Suspend
Time_To_Release

suspend()
play()

resume()
release()

ping()
check_timeout1()
check_timeout2()

LIS_Interface

Time_To_Survive

result()
release()

check_timeout()

Fig. 7. Application services’ interfaces

5 Conclusions and Directions for Future Works

Modern ubiquitous computing environments needs advanced location and tracking
functions. In this paper we presented a couple of services for locating and tracking
active mobile devices in a wide-area UbiComp environment. We also presented some
strategies for making the environment able to reliably handle user disconnections.

 Location and Tracking Services for a Meta-UbiComp Environment 191

Future work will aim to implement functions for handling a finer-grain concept of
location. In particular, the environment will be equipped with active location systems.
In that case a singular site will have different locations insight. This would make the
environment able to improve its services. As an example, the print service could print
a document at the user’s nearest printer of the site.

In order to support such characteristics, we plan to introduce a new component in
our architecture, namely the LocationSystem. A LocationSystem will be in charge of
handling the list of mobile devices detected by a singular active location system. As a
consequence, each location system will be driven by a specific LocationSystem
component, and the list of mobile device active in a site will be obtained as logical
sum of the lists handled by the LocationSystems of that site.

References

[1] M. Weiser, “The Computer for the 21st Century”, Scientific AM, September 1991,
reprinted in IEEE Pervasive Computing, Jannuary-March 2002.

[2] K. Lyytinen and Y. Yoo, “Issues and Challenges in Ubiquitous Computing”,
Communications of ACM, December 2002, Vol. 45, N.12.

[3] S. Fischmeister, G. Menkhaus and A. Stumpfl, “Location-Detection Strategies in
Pervasive Computing Environments”, in the proc. of the 1st international conference on
Pervasive Computing, PERCOM03.

[4] D. Saha and A. Murkrjee, “Pervasive Computing: A Paradigm for the 21st Century”,
IEEE Computer, March 2003.

[5] T. Kindberg and A. Fox, “System Software for Ubiquitous Computing”, IEEE Pervasive
Computing, January-March 2002.

[6] J. Hightower and G. Borriello, “Location Systems for Ubiquitous Computing”, IEEE
Computer, August 2001.

[7] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, and D. Zukowski, “Challenges:
An Application Model for Pervasive Computing”, in the proc. of the 6th ACM/IEEE Int.
Conference on Mobile Computing and Networking, MOBICOM2000.

[8] R. Droms, “Dynamic Host Configuration Protocol”, RFC 2131, Internet Engineering
Task Force, www.ietf.org.

[9] C. E. Perkins and K. Luo, “Using DHCP with computers that move”, Wireless Networks,
1995, pp 341-353, Baltzer AG, Science Publisher.

[10] Y. T’Joens, et all, “DHCP Reconfigure Extention”, RFC 3203, Network Working Group,
www.ietf.org.

[11] http://cobra.umbc.edu/
[12] http://oxygen.lcs.mit.edu/
[13] Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste P., “Project Aura: Toward

Distraction-Free Pervasive Computing”, IEEE Pervasive Computing, April-June 2002

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 192 – 205, 2004.
© Springer-Verlag Berlin Heidelberg 2005

Applying Structural Computing Paradigms to
Domain Analysis

By Example of Knowledge Transfer in Higher Education

Armin Ulbrich1, and Klaus Tochtermann1,2

1 Know-Center Graz,
2 Institute for Knowledge Management, Graz University of Technology,

Inffeldgasse 21a,
8010 Graz, Austria

{aulbrich, ktochter}know-center.at
http://www.know-center.at

Abstract. This paper deals with the application of research results from Struc-
tural Computing (particularly the grand unified theory) to the domain analysis
process. The domain analyzed is knowledge transfer in higher education which
includes supporting teaching, researching and learning. In order to create an ap-
propriate knowledge transfer system, concepts of the domain in question are
analyzed applying the grand unified theory. The “personal folder” qualifies as
the most basic structuring mechanism for this application domain. The personal
folder concept is investigated and its properties are discussed from the data,
structure and behavior perspective.

1 Introduction

In higher education, researchers, students and lecturers have similar work practices
concerning the acquisition and distribution of new and important knowledge. Nor-
mally, these work practices include steps such as search for resources (literature and
tools) that are relevant in current working fields and contexts, collect and store them,
classify them and make them available for discussion or for sharing them with peers
and learners. A group of researchers at Graz University of Technology and Know-
Center are currently designing a system for supporting the work practices outlined
above. The objective is to develop a digital library environment that provides support
in the domain knowledge transfer for higher education’ in its broadest sense. This
paper seeks answers to issues, which occur during the process of analyzing the prob-
lem domain.

The concept of the personal folder turns out to be the one distinguished structuring
and structured entity that can be found throughout several functional areas of the
domain in question. The personal folder is analyzed from several viewpoints that take
especially its structuring functionality as well as its processing functionality into con-
sideration. The application of this work to Meta-Informatics is actually two-fold.
Firstly, there is a description of what we find to be the most essential or atomic under-

Applying Structural Computing Paradigms to Domain Analysis 193

lying abstraction that makes up and provides the structuring mechanism of a specific
domain. Secondly, issues concerning the processing capabilities of the given abstrac-
tion are dealt with, that is, what are the processing operations that are executed upon
the structural abstraction and what processing operations has the structural abstraction
to provide. Since there has been an extended discussion on behavior in Structural
Computing ([4]), particularly the last aspect appears to be quite relevant for the appli-
cation of this work to Meta-Informatics. This discussion is considered to be of special
importance in the case of the analysis and design of the personal folders.

This paper is structured as follows: In section 2 current research results from the
field of dynamic personalization and Structural Computing are shown in order to
position this paper in the context of related research areas. In section 3, first the ana-
lyzed domain is outlined briefly and then the basic underlying structuring concept is
examined and discussed. Section 4 concludes with a brief discussion of the findings.

2 Positioning This Contribution Within Related Work

This contribution deals with domain analysis in the field of knowledge transfer tools
for higher education. There are of course several aspects such as educational issues,
system integration issues, performance and scalability issues and other that are heav-
ily related to the work described in this paper. Although these issues are considered to
be highly relevant, this contribution merely focuses on analyzing the domain by ap-
plying research results and paradigms from the fields of personalization in knowl-
edge-based systems and Structural Computing. This section gives a brief outline of
how our work is put in the context of work done in the fields mentioned.

2.1 Dynamic Personalization

Any person operating with a computer system is working within her own specific user
context. This context might be defined by the person’s identity, current activity,
knowledge, competencies, her role within a given organization and many more fac-
tors. It has been shown ([8] and [9]) that especially knowledge-intensive work (i.e.
execution of work activities that rely to a large extent on the creation or application of
knowledge) needs to be supported by software tools that are able to adapt themselves
depending on a user‘s specific context. Additionally, it has been shown ([5]) that there
is a strong demand for software tools that take possible changes into consideration
and allow for dynamically adapting not only content and features at run-time but also
the respective adaptation policies in use. In analogy to the term user context, the
status of a system as far as the content, features and active policies are concerned, is
referred to as system context. The concept of considering context and adapting content
and features accordingly is referred to as personalization, the additional consideration
of change and dynamics is consequentially referred to as dynamic personalization.

[5] defines and describes a meta-model for a software system that provides dy-
namic personalization features. There are three fundamental entities within the sys-
tem: The first entity is called UserContext; it represents the user operating with the
system. The second entity represents content or system features which can be

194 A. Ulbrich and K. Tochtermann

personalized. This entity is referred to as PersonalizableEntity. The third entity is
responsible for processing and performing dynamic personalization. It is referred to as
PersonalizationEngine. The entities are related to one another as follows:

Whenever the user context changes (entity UserContext) the processing entity
(PersonalizationEngine) is triggered to operate. This operation leads to the personal-
ization of the target entity (PersonalizableEntity) that is the adaptation of the content
or the system features.

Whenever the target entity (PersonalizableEntity) is altered for some reason, an
event occurs and as a result of that the processing entity is triggered again and the
user context is updated.

The processing entity relies on rule-based interpretation of conditions which
change according to event. Occurrences of events trigger the processing entity to
perform certain actions. The mechanism behind this is called event-condition-action
(ECA). An event occurs whenever the user’s context changes (e.g. location, role, user
navigation, competencies) or a possible target entity changes (e.g. content or access
rights of entities in the knowledge are created newly or change). The processing entity
‘decides’ according to the ECA policy implemented whether or not to propagate the
event further.

Fig. 1 gives an overview over the entities of the meta-model and their interrelation-
ships.

Fig. 1. The basic entities of the proposed meta-model

To sum up, dynamic personalization deals with the behavior of a software system
according possibly rapid changes in (working) contexts. It provides the user-side as
well as the system-side with mechanisms that allow for adapting to these changes and
keeps the representation of the system context and the user context up-to-date.

2.2 Data and Structure and Context and Behavior

Structural Computing has been established in the last couple of years (see for instance
[6]) as a computer science discipline aiming at shifting the attention in software engi-
neering away from the data to the structure: Instead of viewing the independent data-
objects as being of paramount importance, the interrelationships of data objects are
viewed as being (at least) equally important. Therefore, instead of analyzing and

Applying Structural Computing Paradigms to Domain Analysis 195

designing the essential data objects of a computer system, Structural Computing seeks
among others for the basic structural abstractions of a system, the structural trans-
formations (i.e. transformations from one structures into another) that might be ap-
plied to them and for the behaviors (i.e. the way a structure acts and reacts upon cer-
tain computations) structures might reveal.

In [10] the results of an investigation are described, which aimed at finding the
structural abstractions and structural transformations of the meta-model for dynamic
personalization introduced above. The structural abstraction needed to provide a way
that prevents data objects and connections between them to be viewed and treated
separately. They must only be treated as a unity and the structuring abstraction – in-
stead of one distinguished data item – is made the paramount focus of processing at
any stage. Fig. 2 gives the class diagram in Unified Modeling Language (UML) nota-
tion that represents the structural abstraction.

Fig. 2. Class structure that allows treating the basic structural abstraction as a unity

The structural transformations described in [10] consist of operations on the struc-
tural abstractions that are taken from a taxonomy of Brusilovsky of adaptive hyper-
media techniques ([2]). In Fig. 3 an example is given on how the structure is trans-
formed when a new ‘element’ is inserted into an existing structure.

Although structural abstractions and structural transformations enable software en-
gineers to view a software system from a structure-centric perspective they still have a
severe shortcoming: They do not define what actually happens during a structural
transformation. They only provide means to ensure that a couple of transformations
might take place some time in the future. The inherent dynamics as far as types and
forms of different behaviors are concerned are not addressed. The structural abstrac-
tions are somehow objects to transformation. The active subject of the transformation
is not known. Thus, the semantics of structure are hidden in some other entities such
as algorithms and processing instructions, which are not in the scope of the structure.

196 A. Ulbrich and K. Tochtermann

Fig. 3. Example for a structural transformation: Inserting a new element

In order to overcome this shortcoming, a couple of investigations have already
been made. Stimuli propagation is a way of providing entities with knowledge of how
to operate in case a certain input-stimulus affects any other element of the same struc-
tural element (Vaitis, Tzagarakis et al. in [11]). In [7] Nürnberg et al. discuss how
viewing an entity from a data-view, a structure-view or behavior-view highlights the
corresponding data-, structure- or behavior properties of that entity. All three views
need to be considered when performing a system-analysis, which aims at fully de-
scribing the entities that are computed and the entities that perform the computation.

3 The Domain Analysis

In this section we give a brief outline of a project that is currently being carried out in
cooperation between the Know-Center, Graz and Graz University of Technology
(Austria). The project’s objective is to create an educational system which provides
lectures, students and alumni with online access to teaching and research material.
This section gives an introduction to the domain space in the context of the given
project. Then a distinguished feature element, which is referred to as personal folder,
is described in more detail. Finally, the personal folder is analyzed and its properties
are discussed by applying paradigms from Structural Computing.

3.1 ‘Knowledge Transfer’ Components in Higher Education

The Graz University of Technology is planning to provide online access to their offer-
ings for lecturers, researchers, students and alumni. Researchers and students will be
provided with powerful means for retrieving information from online catalogues and
digital libraries. Lecturers will be provided with tools to organize materials, resources
as well as with communication and testing features. The project aims at creating an
integrated” one stop shop” from which the offerings of the University can be accessed
in a convenient way. At a glance, the one stop shop will provide access to the follow-
ing services (taken from [3]):

• Research portal: The portal integrates several heterogeneous and distrib-
uted data sources (digital libraries, online catalogues, other research por-
tals), supports relevant query techniques (full-text search, meta-data,

Applying Structural Computing Paradigms to Domain Analysis 197

search, similarity search in textual documents as well as multimedia data,
fault-tolerant search etc.) and provides automated, autonomous search
agents.

• Lecture library: Lecturers and tutors will be supported in collecting and
organizing recommended readings in their personal library; they make
them accessible to peers and learners. Lecture libraries are in essence
(small) personal digital libraries which are made accessible just for a
given lecture. Lecturers and tutors shall be provided with templates,
which allow them to easily set up a lecture web site that looks and be-
haves in accord with University-wide or Institute-wide requirements. Stu-
dents as well as peers have access to lecture libraries based on a role-
based access rights concept. Search results from the research portal are
imported into the personal library and filed under the structuring policy of
the personal library.

• Workspace: The project creates workspaces for groups of students and in-
dividuals. Lecturers, tutors and students can set up workspaces. Work-
spaces may contain personal digital libraries, lecture libraries, appoint-
ment calendars or upload areas. Lecturers (and researchers) can set up
workspaces that are devoted to certain lectures or fields of interest and re-
sources from their workspaces can be made accessible via lecture librar-
ies. Resources from workspaces set up by students can not be moved to
lecture libraries but can only be re-used in the student’s personal digital
library.

• Personal folder: Lecture libraries as well as workspaces provide users
(e.g. students, lecturers) with a structured, customized view to the overall
content and system features. The basic structuring mechanisms are folder
structures. These folders are adaptable to the specific need of the user.

The system aims at supporting teaching and learning processes of students, lecturers
and researchers.

3.2 Personal Folders

As mentioned above, the basic underlying structuring mechanisms are personal fold-
ers that store entities such as readings, collections of readings, uploaded content or
lists of appointments. Investigations of areas like eCommerce show that personal
folder-like mechanisms are considered to be highly relevant. [1] reports on observa-
tions of business-oriented web sites where the concept of personal home pages is
considered to play a critical role in driving utilization of a web-site. Utilization is
argued to be the most important metric for defining the return on investment (ROI) of
any web site. Personal home pages are areas of web sites that are adapted to a specific
user’s needs and interest such, that all content, features and self-service applications
that are relevant to the user, are only a minimal number of clicks away. Personal fold-
ers are somewhat similar in that they aim at providing users with an adaptable collec-
tion of resources that best suffice the demands of the user’s current context.

198 A. Ulbrich and K. Tochtermann

There are a number of basic operations on personal folders such as creating folders,
applying meta-data to folders (e.g. name, date author), adding content to it, changing
content or meta-data or deleting folders. Other operations appear to be more sophisti-
cated, for instance versioning of folders and their content, exporting folders to exter-
nal objects, applying annotations, indexing folder’s contents for later retrieval, creat-
ing links to other folders or making folders publicly available.

Within the context of dynamic personalization, there are still more operations, a
personal folder should offer. Personal folders need keeping track of their content and
usage and they also need to provide means to compare themselves to other entities
and adapt themselves according to the results of the comparison.

At a glance, personal folders take care of the following dynamic personalization
features:

• User context: The context in which a user is, for instance identity, role, work
activities (compare section 2).

• System context: Personal folders also have to consider the state in which the
system is. This includes among others the personal folder’s contents, the fold-
ers of which the personal folder is content of and the specific purpose of the
personal folder in the context of the policies set up for the system environ-
ment. The observation of the folder’s content can be realized by software
agents that observe the personal folder at regular intervals and keep track of
changes to the folder’s state.

User context and system context need to be observed (for instance by software
agents). Changes to the user’s context, the system’s context or the personal folder
trigger a number of mutual updating operations. The following scenario will clarify
this:

A lecturer has set up a personal workspace for a lecture on ‘Knowledge Manage-
ment’. At a given point in time, one of her personal folders contains a collection of
resources that are about ‘eLearning’, which is one distinguished topic of the lecture.

The user context is defined by the user’s identity (say user A), the user’s current
role as a lecturer, the user’s current activity (providing resources for this term’s stu-
dents of Knowledge Management), the user’s state as an expert for Knowledge Man-
agement and the user’s fields of interest, which can be extracted and identified from
the resources he is working with.

The system context is as follows: The workspace created is the one stop shop for
the lecture. Its aim is to provide students with a one-stop portal containing the rele-
vant resources for the lecture. There are a number of references from student’s work-
spaces to the lecturer’s workspace and, since the lecturer is a renowned expert in
Knowledge Management, there are also a number of references to the workspace from
other researchers and experts.

While doing research, the lecturer finds a resource on eLearning dealing with ‘Le-
gitimate Peripheral Perception’. The lecturer considers this resource being highly
important and puts it into the personal folder on eLearning. The personal folder real-
izes the change to its content. It propagates the change to all other folders that are
linked to the given folder. Students are provided with the new and updated

Applying Structural Computing Paradigms to Domain Analysis 199

information. The relationships between the students’ folders and the lecturer’s folder
have been set up at the beginning of the lecture and the behavior is well-defined dur-
ing run-time since it has been designed in advance.

Another researcher (say user B) also had established a relationship with the work-
space on Knowledge Management in the past. The personal folder linked to the lec-
turer’s personal folder on eLearning receives the notification. User B has already
stored the contribution on ‘Peripheral Legitimate Participation’ in his personal folder
in the past. The personal folder of user B informs the personal folder of user A and
user A’s personal folder establishes a relationship with user B’s folder. Thus, a two-
way relationship between the resource-spaces of personal folders of two researchers is
established. The lecturer’s personal folder has dynamically been personalized to his
specific needs. When user A logs into the workspace for the next time, he is provided
with the newly established link to user B and can decide whether or not to use the new
source of resources for his work. The relationship between user B’s folder and the
lecturer’s folder has been established at run-time; the way folders behave has not fully
been defined during design time but is subject to dynamic changes and adaptations.

This scenario and the considerations described above yields the following insights:
Providing functionality dealing with static properties of folders and interrelationships
among them is mainly covered by operations that may fully be described at design-
time. With requirements from dynamic personalization, a demand for more ‘active’
functions of personal folders arises. This means a personal folder is responsible for
executing operations which affect the folder itself as well as other folders. A number
of behavior-concerned functions need to be provided by the folder and to be executed
at run-time in accordance with user contexts and the system context.

Currently, behavior-concerned functionality is only supported to a small degree by
software systems. A reason might be the insufficiency of methods for analysis and
design methods to cover behavior-concerned aspects. In the next section personal
folders are examined with special regard to their behavior.

3.2 Applying Paradigms from Structural Computing

We consider a folder to be the entity, which represents the most atomic structural
abstraction of the system in question. For the following reasons we believe this is
true: A folder is considered to be at least some form of structural abstraction: Firstly,
is structured in that it is related with other folders and it is structuring in that it repre-
sents relations among other folders and entities (compare [7]). Secondly, there is no
way to split up the structuring mechanism provided by the personal folder, i.e. it is not
possible to find a more basic entity that represents relations between the system’s
entities in a sufficient way. The other concepts introduced above such as workspaces,
appointment calendars and so forth are built on top of personal folders.

In the following, a discussion on notable properties of entities when seen from a
data view, a structure view or a behavior view ([7]) is applied to personal folders.
Seen from a structural view, a personal folder is characterized by the following prop-
erties. It consist of a unique name within the folder (file) system, a set of properties
such as creation date and a set of references (e.g. to other folders).

200 A. Ulbrich and K. Tochtermann

Table 1. Discussion of data-view, structure-view and behavior-view of personal folders

Feature Structure view Data view Behavior view

Create folder Name: Folder ID (the
same for all operations)

Properties: Creation
date, creator etc.

References: empty

Name: Folder ID (the
same during all opera-

tions)
Content: Creation date,

creator etc.
Properties: empty

Name: Folder ID (the
same during all opera-
tions)
Elements operated:
empty
Operations: Propagate
creation to system
context (parent folder,
linking to current
folder)

Add reference Properties: Owner,
creator of copy, origi-

nal location etc.
References: Reference
set plus new reference

(pointing)

Content: Bytes repre-
senting reference are

added
Properties: New refer-

ence

Elements operated:
Reference set plus new
reference
Operations: Propagate
add operation to sys-
tem context (parent
folders); add new
reference for tracking,
indexing etc. operations

Change
reference

Properties: Last update,
updating person etc.
References: Changed
reference (pointing)

Content: constant
Properties: constant

Elements operated:
constant
Operations: Propagate
change operation to
system context (parent
folders); remove old
reference; add changed
reference for opera-
tions

Delete
reference

Properties: Last update,
updating person etc.

References: Reference
set minus old reference

Content: Bytes repre-
senting old reference

are deleted
Properties: Remove

reference

Elements operated:
Reference set minus old
reference
Operations: Propagate
delete operation to
system context (parent
folders); remove old
reference

Add content Properties: Owner,
creator of content etc.
References: Reference
set plus new reference

(including)

Content: Bytes repre-
senting content are

added
Properties: New content

added

Elements operated:
Reference set plus new
(included) reference
Operations: Propagate
add operation to sys-
tem context; index new
content

Change content Properties: Last update
etc.

References: Changed
reference (including)

Content: Bytes repre-
senting content are

changed
Properties: constant

Elements operated:
constant
Operations: Propagate
change to system con-
text

Applying Structural Computing Paradigms to Domain Analysis 201

Delete content Properties: Last update
etc.

References: Reference
set minus old reference

(including)

Content: Bytes repre-
senting content are

deleted
Properties: Old content

removed

Elements operated:
Reference set minus old
(included) reference
Operations: Propagate
delete operation to
system context; remove
old content from index

Add meta-data Properties: Owner etc.
References: Reference
set plus new reference
to meta-data (includ-

ing)

Content: Bytes repre-
senting meta-data

added
Properties: New meta-

data bytes

Elements operated:
Reference to meta-data
added
Operations: Propagate
add operation to sys-
tem context

Change meta-
data

Properties: Last update
etc.

References: Changed
reference (including)

Content: Bytes repre-
senting meta-data

changed
Properties: Changed

meta-data bytes

Elements operated:
constant
Operations: Propagate
change to system con-
text

Delete meta-
data

Properties: Last update
etc.

References: Reference
set minus old reference

(including)

Content: Bytes repre-
senting meta-data

deleted
Properties: Old meta-

data removed

Elements operated:
Reference to meta-data
removed
Operations: Propagate
remove operation to
system context

Add attribute Properties: Last update
etc.

References: Reference
set plus new reference

Content: Bytes repre-
senting new attribute

Properties: New attrib-
ute bytes

Elements operated:
constant
Operations: Propagate
add operation

Change
attribute

Properties: Last update
etc.

References: Reference
changed

Content: Bytes repre-
senting changed attrib-

ute
Properties: constant

Elements operated:
constant
Operations: Propagate
change to system con-
text

Delete attribute Properties: Last update
etc.

References: Reference
set minus old reference

Content: Bytes repre-
senting attribute de-

leted
Properties: Attribute

removed

Elements operated:
Reference to attribute
removed
Operations: Propagate
delete to system con-
text; remove attribute
from indexing etc.

Create Version Name: New Folder ID
for new version

Properties: New version
number

References: Reference
set contained stays the

same

Name: New Folder ID
Content: New byte

block allocated; content
from old version plus
new version number

copied
Properties: Same as old

version

Name: New Folder ID
Elements operated:
Same as old version
Operations: Propagate
new version to system
context; parent folders
triggered to add refer-
ence to new version to
their reference set

202 A. Ulbrich and K. Tochtermann

Roll back
version

Name: Old Folder ID
Properties: Old version

number
References: Old version

reference set

Content: Bytes repre-
senting old version
Properties: Old ver-

sion’s properties

Elements operated: Old
version’s elements
Operations: Propagate
roll-back to system
context; parent folders
triggered to roll-back
reference set to new
version

Print Properties: constant
References: constant

Content: constant
Properties: constant

Elements operated:
constant
Operations: References
printed according to
print order

Export Properties: constant
References: constant

Content: constant
Properties: constant

Elements operated:
constant
Operations: References
exported according to
export order

Add annotation Properties: Last update
etc.

References: Reference
set plus new reference
(pointing/ including)

Content: New bytes
representing annota-

tion
Properties: New anno-

tation

Elements operated:
Reference set plus new
references
Operations: Propagate
new annotation to
system context; add
annotation to indexing
etc.

Change
annotation

Properties: Last update
References: Reference

changed (pointing/
including)

Content: Bytes repre-
senting changed anno-

tation
Properties: Changed

annotation

Elements operated:
constant
Operations: Propagate
change to system con-
text

Delete
annotation

Properties: Last update
etc.

References: Reference
set minus old reference

(pointing/ including)

Content: Bytes repre-
senting annotation

deleted
Properties: Annotation

removed

Elements operated:
Reference to annota-
tion removed
Operations: Propagate
delete to system con-
text; remove annota-
tion from indexing etc.

Index folder Properties: constant
References: Reference

to index added (hidden)

Content: Bytes repre-
senting new index

Properties: New index

Elements operated:
constant
Operations: New index
propagated to system
context

Search in
folder

Properties: constant
References: constant

Content: constant
Properties: constant

Elements operated:
constant
Operations: Retrieve
information from index

Applying Structural Computing Paradigms to Domain Analysis 203

Create search
agent

Properties: constant
References: Reference

set plus new reference to
agent (pointing)

Content: Bytes repre-
senting reference to

agent
Properties: New search

agent

Elements operated: New
reference to agent

Operations: Schedule
agent; Propagate search
results of agent to sys-
tem context in regular
intervals according to
search agent’s policy

Change search
agent

Properties: constant
References: Changed

reference to agent

Content: Bytes repre-
senting agent changed
Properties: Changed

search agent

Elements operated:
Changed reference to

search agent
Operations: constant

Delete search
agent

Properties: constant
References: Reference
set minus reference to

agent (pointing)

Content: Bytes repre-
senting reference to

agent changed

Elements operated:
Reference to search

agent removed
Operations: Propagate

to system context
Link from

other folder
created

Properties: constant
References: Reference
set plus “backward”

reference to other folder

Content: Bytes repre-
senting “backward”

reference added
Properties: New “back-

ward” reference

Elements operated:
Other folder added to

system context
Operations: Propagate

to user context
Track user

context
Properties: constant
References: constant

Content: Bytes repre-
senting user context
(possibly) changed

Properties: constant

Elements operated:
constant

Operations: Trigger
event if user context
changes; propagate

event to system context;
folders linked connected
with current folders are
analysed for results that

fit new user context
Track system

context (state of
folders linking

to current
folder)

Properties: constant
References: constant

Content: Bytes repre-
senting system context

(possibly) changed
Properties: constant

Elements operated:
constant

Operations: Trigger
event if system context

changes; propagate
event to user context;

Propagate event to
folders connected with

current folder
Track personal

folder
Properties: constant
References: constant

Content: constant
Properties: constant

Elements operated:
constant

Operations: Trigger
event in case personal
folder changes; Propa-

gate event to system
context; propagate event

to user context

Seen from a data view a folder is made up of a unique name, an arbitrary content
(which might be interpreted by the system as containing semantic information for
instance whether the folder is a personal digital library or lecture library) and a set of
properties such as access rights.

204 A. Ulbrich and K. Tochtermann

From a behavior view, a folder consists of a unique name and a set of elements on
which functions can operate and a set of operations. Depending on the type of folder
(personal folder, lecture library etc.), there are several instructions, which might be
executed on the elements of the operation. The interpretation of the semantics, i.e. the
type of the folder and what operations might be executed is subject to personal folder
operations.

The examination of the data-structure-behavior views of personal folders reveals
the following results: Personal folders are examined and described for their proper-
ties, interrelationships and behaviors relevant in the context of each view. Through
this, especially behavior-concerned aspects are made visible and can more easily be
described. When realizing the system, special care is taken for behavior-concerned
system requirements and thus, for features that are necessary to realize active dynamic
personalization.

The following table provides an overview of the characteristics which need to
be considered when viewing personal folders from different perspectives. Each
column represents a specific view on personal folders. The table cells show some
properties that are highlighted when viewing personal folders from the according
view.

4 Discussion an Open Issues

The concept of personal folder is considered to be the basic structuring mechanism of
our system for ‘knowledge transfer’ in higher education. Personal folders show sev-
eral interesting characteristics given a number of specific user contexts and system
contexts. Some of the characteristics of personal folders are more related to the struc-
tural nature whereas some are more related to their behavioral nature. In this contribu-
tion, an examination has been outlined, which aimed at analyzing personal folders
from different views (data, structure, behavior). Each of the views only highlights the
properties that are considered to be relevant for the respective view. Putting the re-
sults together leads to a broader picture of the object of investigation. We therefore
believe that such a multidimensional approach during the analysis phase helps to
better identify the essential characteristics of a software system compared to an iso-
lated analysis of the application domain from just one viewpoint.

It is certainly too early to know for sure whether or not the properties which have
been revealed during the examination are complete and represent static as well as
dynamic aspects of a system in its entirety. One reason for this is that completeness is
an open issue we identified during our research. It would be a great help if some
mechanisms would be available to get a feeling of how “complete” the result of the
analysis process is. Also, we are unsure about the impact of an incomplete analysis:
For example, how strong is the impact of an incomplete analysis from one view (e.g.,
data) on the analysis results in another view (e.g. behavior). A suggestion for future
basic research would be to better understand the interdependencies between the dif-
ferent views of the grand unified theory.

Applying Structural Computing Paradigms to Domain Analysis 205

Acknowledgements

The Know-Center is a Competence Center funded within the Austrian Competence
Center program K plus under the auspices of the Austrian Ministry of Transport,
Innovation and Technology (www.kplus.at).

References

1. Broadvision: Using Proven Personalization Techniques to Drive Measurable and Profitable
Online Behavior. Broadvision White Paper, 2004.

2. Brusilovsky, P.: Adaptive Hypermedia. User Modeling and User-Adapted Interaction, Vol.
11, Kluwer Academic Publishers, Dordrecht, Netherlands. (2001). 87-110

3. Graz Digital Library – Functional Specification, Technical Report, Know-Center (2004).
4. Hicks, D. L. (Ed.): International Symposium, MIS 2003 Revised Papers. Lecture Notes in

Computer Science , Vol. 3002. Springer-Verlag, Berlin Heidelberg New York (2004).
5. Kandpal, D.: Augmenting knowledge-intensive systems with Dynamic Personalization

concepts. Doctoral Thesis, Graz Universitiy of Technology (2003).
6. Nürnberg, P.: Repositioning Structural Computing. Lecture Notes in Computer Science,

Vol. 1903. Springer-Verlag, Berlin Heidelberg New York (2000) 179-183
7. Nürnberg, P.J., Wiil, U.K., Hicks, D.L.: A Grand Unified Theory for Structural Comput-

ing, Lecture Notes in Computer Science, Vol. 3002. Springer-Verlag, Berlin Heidelberg
New York (2004) 1-16

8. Tochtermann, K.: Personalization in the context of digital libraries and knowledge man-
agement. Post-Doctoral Thesis, Graz University of Technology (2002).

9. Tochtermann, K.: Personalization in Knowledge Management. Lecture Notes in Computer
Science, Vol. 2641. Springer-Verlag, Berlin Heidelberg New York (2002) 29-41.

10. Ulbrich, A., Kandpal, D., Tochtermann, K.: Dynamic Personalization in Knowledge-Based
Systems from a Structural Viewpoint. Lecture Notes in Computer Science, Vol. 3002.
Springer-Verlag, Berlin Heidelberg New York (2004) 126-142.

11. Vaitis, M., Tzagarakis, M., Grivas, K., Chrysochoos, E.: Some Notes on Behavior in
Structural Computing. Lecture Notes in Computer Science, Vol. 3002. Springer-Verlag,
Berlin Heidelberg New York (2004) 143-149.

Content Engineering: Bridging the Gap Between
Content Creation and Consumption

Siegfried Reich

Salzburg NewMediaLab,
Jakob Haringer Straße 5/III,

5020 Salzburg, Austria
sreich@salzburgresearch.at

Abstract. We have ever more opportunities to create content, e.g. using
digital cameras, or, taking photos with mobile phones and publishing
them on the Web, to name just a few. At the same time, as content
consumers, we have a growing need for context-aware, tailored content,
e.g. location and time-based services delivered via wireless LAN to our
PDA. Thus, as content creators we aim at higher levels of re-use and as
consumers we expect individualised content at high quality.

There is a gap, one may call it a “content crisis” even, between
the growing opportunities for content creation and the increasing needs
raised by content consumption. Content Engineering as a discipline may
be a step forward to bridge that gap.

1 Introduction

Many – not to say most – of us are Web users. For instance statistics available
at http://www.internetworldstats.com/stats.htm argue with growth rates
well above 100% for the last four years throughout the globe resulting in almost
70% of North Americans using the Internet, in Europe it is still more than 30%
of the population (in 2004).

Besides the aspect of access and/or consumption, we are also increasingly
playing the role of content creators. For instance, in Japan, the penetration
rate with mobile phones with built-in cameras is expected to reach 100% in
2005 (see http://www.eurotechnology.com/store/camera-phone): there will
be more mobile phones with cameras than there are cameras. Additionally, com-
mon infrastructures are emerging, e.g. the MPEG family on a coding level, or
SMIL (the synchronised multimedia integration language) on an integration
level. Future cameras for instance, will not only be able to render SMIL but
will also be able to directly produce SMIL encoded content.

Additionally, we are all working towards “smart” content applications [1],
often in the form of location-aware, time-aware and personalised content and
one of the issues we are facing is that content is not available in the respective
granularity, i.e., we get canned content which is targeted to specific platforms
and scenarios and which is therefore not re-usable.

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 206–211, 2004.
c© Springer-Verlag Berlin Heidelberg 2005

Content Engineering 207

Thus, we are confronted with a gap between the amount of content available
in general and its usefulness as measured in user acceptance. Some have therefore
spoken of a crisis; Klas [8] for instance argues that multimedia producers and
distributors are facing a formidable management task (a “multimedia engineer-
ing crisis” in analogy to the “software crisis” of the sixties and seventies). Some
argue more for new challenges, e.g. Fonnesbech [5] identifies a need for“dramatic
content engineering” whereby he means that only by working both effectively
and creatively on a foundation of solid knowledge about the audience, the busi-
ness model and the technological platform, will we be able to create successful
content, i.e., content that is being accepted by the users.

In the following we argue for Content Engineering as a new discipline that
should help in addressing these issues.

2 Content Engineering: A Definition

The term engineering in general means “the practical application of science to
commerce or industry”1. An engineer must identify and understand the relevant
constraints in order to produce a successful result. Constraints include available
resources, physical or technical limitations, flexibility for future modifications
and additions, and other factors such as requirements for cost, manufactura-
bility, and serviceability. By understanding the constraints, engineers deduce
specifications for the limits within which an object or system may be produced
and operated. The term “engineer” has its origin in the Latin word “ingeniosus”
meaning “skilled”. Hence, engineers are skilled problem solvers.

In computer science, we are familiar with several types of engineering, for
instance software engineering [3], or, more recently, also with disciplines such as
Web Engineering [4, 7] or Hypermedia Engineering [2, 9].

So why would we want to apply engineering principles to content? We argue
that we need to address re-use as well as tailorability in order to be better able
to bridge the gap outlined in the introduction.

– Re-use: Re-use can be defined broadly as “use again after processing”2. There
are several types of content items that would be subject to re-use: ideas
for instance, designs, code, media, processes or also combinations thereof.
Secondly, we need to define how to measure the degree of re-use. Examples
of metrics could include the number of re-use in different publications, the
amount of revenue generated, the amount of time spent for adaptation for
an artefact to be re-usable.
Within the various types of re-use, there are also differences. The degree
of automation of code re-use in software engineering is still limited. On the
other hand, if we think of media re-use, then we (as human beings) may well

1 See http://www.webster-dictionary.org/definition/engineering
2 See http://www.webster-dictionary.org/definition/reuse

208 S. Reich

be able to read an automatic translation of a German text into English even
though the grammar may not be correct: as humans we are typically more
flexible in perception and therefore a basic level of re-use may be achieved
more easily for those items.

– Tailorability: Tailorability can be defined as tailor-made, i.e., made or as if
made specifically for the particular purpose at hand3. This again is a huge
topic, ranging from formatting issues such as screen real estate, bandwidth,
the delivery platform’s hardware and software capabilities up to real issues
i.e., targeting a content artefact towards a user’s location, the respective
time, the user’s interest, and many more.

There are existing definitions of “Content Engineering”. E.g. Vliet defines
Content Engineering as “the development of information systems that support
the entire value chain of multimedia production or parts thereof: creation, digiti-
sation, storage, search, manipulation, management, distribution and delivery, in
an effective, efficient and user friendly way” [11]. In our view this is more a def-
inition of engineering content management solutions and it is focused too much
on systems only. Maicher defines “Content Engineering as the searching, acqui-
sition, classification, storage and visualisation of contents which is supported by
processes and tools [10]”. This definition is based on a sequential list of activities
and misses a conceptual layer.

Following these definitions, we define Content Engineering as “the application
of systematic and quantifiable approaches (concepts, methods, techniques, tools)
along the content value chain, i.e., content acquisition, value adding, and distri-
bution and delivery, in order to support re-use and tailorability for media-rich
publications.”

With this definition we get the content value chain as a top level concept with
defined phases covering the whole life cycle of media artefacts (see Figure 1).
Also, we argue what we mean by content (“media rich artefacts”) and we present
an idea of which approaches we may use, e.g. a formal language (concepts), a
systematic study (methods), genres (methods), best practice (techniques) and
industrial production (tools).

With respect to the artefacts themselves, we believe that a separation of
media, indexing structures, design, etc. is key to ensure re-use. Wurman [12] for
instance argues for the ways of organising information to be finite, in particular
he argues for the dimensions location, alphabet, time, category and hierarchy
(LATCH) to be the core dimensions of information organisation and that content
should be organised along these dimensions (see also Figure 2).

A different way of viewing this is to think of autonomous content objects
which are being passed through the value chain and offer different interfaces
to the various publishing activities. See for instance enhanced multimedia meta
objects (EMMOs [6]).

Finally, with respect to the process models involved in the various activi-
ties we believe that different approaches would be possible. Just as there are

3 http://www.webster-dictionary.org/definition/Tailor-made

Content Engineering 209

M
u
lt
im

e
d
ia

 R
e
p
o
s
it
o
ry

B
u
ild

in
g
 b

lo
c
k
s
 o

f

C
o
n
te

x
tu

a
lis

e
d
 I
n
fo

rm
a
ti
o
n

import

import

import

delivery

delivery

delivery

HW / SW for
MM

Displays

HW / SW
Technology for

Information
Delivery (QoS,

etc.)

Tools for
Authoring and
Value Adding

Content
Management

Systems

Tools for
Information
Acquisition,

Filtering,
Importing, etc.

Content Information
Design

Mobile Phone
Mobile Phone

PDA
PDA

Web Browser
Web Browser

Goe-ref. Data
Goe-ref. Data

MM Assets
MM Assets

Metadata
Metadata

place

subject

time

Fig. 1. Content Value Chain

Fig. 2. LATCH Layers

210 S. Reich

agile methods and more traditional methods (e.g. waterfall model) in software
engineering, we argue that different styles — or genres — of content creation
and manipulation need to be defined. For instance engaging in an online chat is
different to writing a thesis; a weblog would have different requirements as well.
The information architecture using e.g. LATCH layers as outlined in Figure 2
would be a basic concept for enabling these different types of narratives being
put on top of existing media artefacts.

3 Summary

In this position statement we have argued for a gap we perceive in the possibilities
of creating content and the expectations we have in consuming situation-aware,
tailored content. We believe that “content engineering” as a discipline would
provide a structured approach which would help in addressing these issues by
defining a content value chain, by outlining the necessary (logical) architectures
and by allowing different process models to be included.

Acknowledgements

We would like to acknowledge the support of Salzburg NewMediaLab via the
Competence Center Programme funded by the Austrian Ministry of Economic
Affairs and Land Salzburg under grant No. 98.362/65-I/16/03.

References

1. Wernher Behrendt, Guntram Geser, and Andrea Mulrenin. EP2010 — the Future
of Electronic Publishing Towards 2010. Information Society DG – Unit E2, EUFO
1-275, Rue Alcide de Gasperi, L-2920 Luxembourg, 2003.

2. Michael Bieber. Hypertext and web engineering. In Proceedings of the ’98 ACM
Conference on Hypertext, June 20-24, 1998, Pittsburgh, PA, pages 277–278. ACM
Press, 1998.

3. Barry W. Boehm. Software engineering. IEEE Transactions, 25(12):1226–1241,
1976.

4. Yogesh Deshpande, San Murugesan, Athula Ginige, Steve Hansen, Daniel Schwabe,
Martin Gädke, and Bebo White. Web engineering. Journal of Web Engineering,
1(1):3–17, 2002.

5. Christian Fonnesbech. Dramatic content engineering. The ACTeN Project, 2002.
http://www.acten.net/cgi-bin/WebGUI/www/index.pl/newsletter1?wid=183&

func=viewSubmission&sid=106.
6. Sunil Goyal, Wernher Behrendt, and Siegfried Reich. EMMOs — enhanced

multimedia meta objects for re-purposing of knowledge assets. In MIS ’02 -
Meta Informatics Symposium 2002, Esbjerg, August 2002, LNCS 2641, pages
155–160, 2002.

Content Engineering 211

7. Gerti Kappel, Birgit Pröll, Siegfried Reich, and Werner Retschitzegger, editors.
Web Engineering — Systematische Entwicklung von Web-Anwendungen. dpunkt
Verlag, Heidelberg, 2003. In German.

8. Wolfgang Klas. Describing multimedia. Technical report, Multimedia Information
Systems, University of Vienna, September 2000.
http://www.cordis.lu/ist/ka3/iaf/swt presentations/swwsklas.htm.

9. David Lowe and Wendy Hall. Hypermedia & the Web. An Engineering Approach.
John Wiley & Sons, Chichester, 1999.

10. Lutz Maicher. On how to model content engineering in a semantic web environ-
ment. In Innovative Internet Community Systems, Third International Workshop,
IICS 2003, Leipzig, Germany, June 19-21, 2003, Revised Papers, LNCS 2877,
pages 168–179, 2003.

11. Harry van Vliet. Directions for long-term content engineering research. A
view from above. Technical Report TI/RS/2000/048, Telematica Instituut, the
Netherlands, 7500 AN Enschede, 2000.
https://doc.telin.nl/dscgi/ds.py/Get/File-9796/GigaCE Long term

Content Engineering Research.pdf.
12. Richard Saul Wurman, David Sume, Loring Liefer, and Karen Whitehouse. Infor-

mation Anxiety 2. Que, December 2000.

Blog Perspectives

Services: Amoeba Versus Whale

Frank Wagner

Roskilde University,
Universitetsvej 1, 4000 Roskilde, Denmark

frankw@ruc.dk

Abstract. Information technology is supposed to provide services and
to support work. The term service is used in different ways, for both
parts of a system and for what a company provides in electronic form.
Common is that it describes the encapsulation of some functionality so
it can be used to process data in a well defined way.

The use of information technology is changing though. It is now sup-
posed to serve individual userswith their knowledgeworkand it is supposed
to improve cooperation between organisations and access in general. Ap-
plications as they are used now leave too much work to the user and even
require extra work around their limitations and to learn to use them.

Structural computing tries to provide a new kind of services working
with structures instead of data to support knowledgework.Web services on
the other side are an attempt to enable cooperation between organisations.
Both have a problem in relation to individual users.

At the same time new applications like blogs and wikis gain ground.
They adopt more easily to their users needs and are successfully used both
in private and for knowledge work. They express a different view on the use
of information technology. This paper tries to show perspectives blogs and
similar applications can give on services and system architecture.

1 Services: Amoeba Versus Whale

Amoeba versus whale - how does this make sense in the context of this paper? It
depends on the perspective. Both are encapsulated by some layer that controls
interaction with their surroundings, but neither has a layered achitecture. Even
though their size does not matter much when looking at the overall system
architecture, it does matter when we as humans try to interact with them. This
is not just a question about the interface, but it has to do with the architecture.
Well, we rarely interact with amoebas or whales directly, but we can not all
really avoid interacting with information technology.

In section 2 I describe some of the problems related to applications and how
they may be related to an attempted layered system architecture. Section 3
is about blogs, a kind of applications that seem to emerge from the needs of
their users. Section 4 is about perspectives and I want to focus about some
aspects found when looking at blogs and that I consider relevant for talking about

U. Kock Wiil (Ed.): MIS 2004, LNCS 3511, pp. 212–219, 2004.
c© Springer-Verlag Berlin Heidelberg 2005

Blog Perspectives 213

applications. In section 5 I try to describe a simple service oriented architecture,
where applications make use of the services information technology can provide
instead of being applications provided by the technology.

2 Practical Problems with a Layered Architecture

Applications are considered to be part of a layered system archtecture, where
they are in the top layer, which interfaces to the user. Even though system devel-
opment pays much attention to the human-computer interaction and interface
design has been improved, these applications do not seem to be as useful as
expected, especially for knowledge work.

A layered system architecture has been good practice for some time now, each
layer encapsulating the implementation details and providing an interface to the
layers beneath and above. The lowest layer with an interface to the hardware and
the highest layer, the application layer, with an interface to the users. The whole
system is used as a tool. The interaction happens through the outer interface of
the application or application layer.

Applications developed with this layered approach in mind have been useful
for formal organisations, where the needs can be welldefined and the applications
can be adopted to them. The use of layers makes it easier to move and reuse
pieces in different systems. For informal or individual use, these applications
and systems seem to be less useful and they require quite some effort from the
users. There has been focus on the user interface to improve the usability of the
applications, but this does not solve all the problems. There are both practical
and conceptual reasons for these problems.

To meet different individual and more spontanous needs, as they are known
from knowledge work, the applications have been extendend. This has resulted in,
compared to specific individual needs, sometimes huge applications. Specialised
applications are still needed. These applications overlap in the application layer
and can interfere with each other. A layered architecture requires some control
which is not suitable for individual use.

Applications seem to need access to lower layers of the system and they often
spread themselves all over the system. The system may try to control at least the
integrity of the system and to prevent applications to access the lower layers,
but this may invalidate the application if it depends on it. The system may
protect the running applications from each other, but it can not protect the
data these applications work on. Furthermore user specific data, both about the
configuration and the content itself is spread all over the system.

The application logic itself expresses the developers’ understanding of the
users’ (generalised) needs. It relies on the underlying layers and logic, so the
adoption to individual use often requires knowledge of those. An example for
such a mixed description can be found in a description of a blog system [6].

Another reason may be found in the nature of knowledge work itself [2].
Knowledge can be used to evaluate a variety of possible solutions and to decide
what to do. What actually is done depends on the situation. An organisation

214 F. Wagner

often has defined rather fixed processes, so organisational work may be seen as
a subset of knowledge work in general.

While a layered system architecture seems to be useful for formal organisa-
tions, it does not support applications built to meet the needs of both individual
users and knowledge workers. Applications that adopt to individual use without
being too expensive in neither training nor professional assistance may need a
different architecture. This may be useful for organisations as well, because indi-
vidual have to act together in the context of the organisation and because some
organisational work has to be coordinated across organisations [8]. Apart from
that, large development projects resulting in large applications seem to be very
difficult to control.

The system architecture should lead to a clear separation of concerns. The
nature of knowledge work requires support by applications that do not fit into
the architecture currently used for personal systems. The problems are not as
much about the data and the funcionality as they are about how these are used
and about the resulting complexity of the applications.

3 Blogs and Co

The term blog (or weblog) is used for both the way information is provided and
for the tools used to do it. Blogs are used by many different people and they are
used in many different ways. The following quote summarises the characteristics
I want to focus on.

Weblogs are important new components of the Internet. They provide in-
dividual users with an easy way to publish online and others to comment
on these views. Furthermore, there is a suite of secondary applications
that allow weblogs to be linked, searched, and navigated. Although origi-
nally intended for individual use, in practice weblogs increasingly appear
to facilitate distributed conversations. This could have important impli-
cations for the use of this technology as a medium for collaboration.
Given the special characteristics of weblogs and their supporting appli-
cations, they may be well suited for a range of conversational purposes
that require different forms of argumentation. . . . [3]

There are several approaches to realise blogs [10]. Livejournal is serverbased;
the content is stored on a central server, but there are clients to make it easier
to update the journal (blog). Radio Userland is clientbased; the content is on
the local system but can be uploaded to a server. Blojsom [14] publishes files in
a directory hierachy; it acts on content external to the software, but can be used
to maintain it through a web interface or a remote client. Most provide some
basic functionality which can be extendend.

I see blogs as an example for a kind of applications that support conversations
in different ways. Other examples for this kind of applications are wikis, chats,

Blog Perspectives 215

email and news. They all work on text but support other kind of information to
some degree. The technical differences between these applications are not really
big. It is the intention for using them that makes the difference.

The essence of a blog is to write down some impression or thought, without
having to think about anything else; just write and save; just like some notes on
a piece of paper. Blogs use time as an identifier and this can used to the context.
Blogs use to provide some kind of notification about new entries (news- or rss-
feeds), that can be used to aggregate changes in several blogs. A blog does not
have to be accessible to everyone. After all, it is a first impression and references
to entries should stay valid.

Wikis are not organised by time, but many provide change notifications as
they are common for blogs. Wikis relate entries (called pages) through references
embedded in the text, so while blogs use time to identify entries, wikis use the
context. Both are often extended by each other’s feature [4]. Email is often
used to notify about changes. Email and news support aynchronous more or less
private dialogues. Chats support synchronous dialogs.

Blog conversations, mentioned in the quote above, require additional support
to be used efficiently. One problem to be addressed is about how they can be
discovered and tracked. This is done by using additional information like the
referrer and trackbacks [11] to blog entries. It is not very reliable and usually
not available for chats, emails and wikis which complement the conversations.
Another problem is related to the different perspectives that influence the con-
tributions to such a conversation. There should be support for work with the
information about the perspective as it can be essential for the use and under-
standing; more about this in section 4.

The basic idea of blogs is to somehow capture and express impressions and
thoughts as they arise. To begin with this information is related to the context,
which includes the perspective in use, by a time reference. While working with
this information an as experience grows, additional support by technology is
needed. This can be satisfied by services provided by the local or by remote
systems. Blogs are closely related to similar applications like wikis, email, news,
chat and more and it may be useful to see all of them as the application of the
technology depending on and emerging from individual needs in a social context.
Lilia Efimovas blog [1] covers many aspects of blogs, f.ex. [2, 4].

4 Perspectives

Perspectives and how we use and deal with them are interesting for both blog
conversations and application development. Below I want to focus on some as-
pects of blog conversations and try to find inspiration for application develop-
ment.

Blogs entries, even in the same blog, can be written using different perspec-
tives. Blogs conversations and blogs in general are not intended to harmonise

216 F. Wagner

these perspectives, instead they may be used in a dialectic or a complementary
sense aiming at an improvement of personal or shared concepts. There are several
ways to use the information from blogs and there are several problems related
to it. I want to use the idea of the concept to address some of these problems.

Concepts are often identified by terms. The presentation of [9] gave an ex-
ample that a simple mapping of terms in different languages can be insufficient
to understand the related concepts. Instead of identifying concepts by terms,
concepts can be identified or specified in many different ways. [5] describes an
approach using automated text analysis.

The main difference between our research and the work on ontologies and
the Semantic Web is that the latter tries to formalise structures that are
believed to exist in some abstract sense in the real world, thereby making
classification and inferencing possible (e.g. that apples are fruit). On the
other hand, we have developed techniques that pick up the patterns
people leave in their weblog which we believe are a result of their use of
an underlying conceptualisation. . . . [5]

I understand concepts in a way that is similar to ’underlying conceptualisation’.
A concept is the collection of all the impressions and thoughts about some

object. These can to some degree be expressed as information of some kind that
we can work with and that can be shared. This information can be about certain
aspects of the object and may be related to certain perspectives. Impressions,
thoughts, pieces of information and more contribute to the concepts and they
can be used to verify, validate and otherwise work with each other.

From this perspective, knowledge work is about concepts, not about infor-
mation. Knowledge work requires skills to handle information so it can be used
to enhance the concepts of interest. This approach separates the interpretation
and use of information (the knowledge work) from mere manipulation of infor-
mation. The concept determines how information has to be handled and we have
to know how information has been handled to be able to use it for a concept.

The meaning of information is to improve concepts. Information makes sense
(it can be used by our senses) if we can use it to improve concepts; informa-
tion can make sense even if we do not understand or know the meaning and
intention behind it. To make this work we analyse, characterise and evaluate the
information; this is what we have to learn and what we have to have experience
with. Information can be exchanged and shared in an attempt to build shared
concepts. Shared concepts can work if the individuals can develop a common
understanding. We use trust to make this manageable.

Application development involves usage perspective and system perspective,
both being in general very different. The corresponding concepts are very dif-
ferent. Applications as part of the system only leave the interface to mediate
between these different concepts. In cases where the usage and the application
is welldefined, this may be enough, but it is not in general. Using the idea of
concepts described in this section and what I summarised in the section about
blogs, applications can be seen as a kind of shared concept between the user of
information technology and information technology systems.

Blog Perspectives 217

5 Applications

The term knowledge work is used for a kind of work that may seem to be more
creative compared to organisational work which is meant to be more productive;
finding what is right to do in contrast to doing it how it is done right. With
organisational work being about the organisation itself instead of the production
this devision does makes less sense.

This corresponds to the change of terms from data processing to information
technology. Not taking account of the point of view, the discussion of the differ-
ence between data and information can be end- and fruitless. Information can
be processed like data, like a laptop can be used as a paperweight. The question
is about finding the right perspective to see the subtle differences that may have
important consequences.

Data are defined so they can be processed independently of their meaning;
this can be supported efficiently by technology. Information is choosen with an
intention and/or to express a meaning which is dependent of the context and
perspective; processing information as raw data does not make sense in general.
Information is part of some structure which may be rather complex. One way to
deal with this complexity is to find patterns we can process.

From this point of view information technology should provide services to
improve work with patterns. Structural computing adds additional data types
which define and complement other data types. Structure services are examples
for how to process these data and can be used to build services to handle patterns.

The concept presented in 4 describes a generic pattern. A service provider
should be able to deal with such generic concepts. It encapsulates the system
and provides at least one service to accept requests, perform generic security
checks and respond to the request. Without any other services supporting it, all
it can do is to somehow confirm the request. It may use services from the same
provider or from another service provider eventually encapsulating the system
even more. Services by the same provider are more trustworthy than services by
other providers.

Access to time stamps and to storage of the representations of the request
should be enough to provide a (request-) log, but a blog uses the content in sev-
eral ways. This is where the service architecture should become visible. Instead
of defining functionality for the blog inside the service, the service has to be able
to recognise the kind of request and to verify as much as possible. It collects at
least references to what it can identify and builds its own concept of this request.
It then tries to find one or more services that match patterns in this concept.

The idea is to verify as much as possible, but otherwise only do as little
as necessary to delegate the request (with its own internal concept) to a more
qualified service. The behaviour of the service in case of ambiguity could be in-
fluenced in different ways, including preferences and the state and capabilities of
the system. If it deviates from the expected behaviour this should be reasonable.
The modification of the basic behaviour define the application and should follow
the user from provider to provider. How this can be done has to be studied.

218 F. Wagner

The term ’service oriented architecture’ is often used with ’web services’ in a
business oriented context. Web services are not intended to be only used in this
context, but it seems as if it dominates the development. An indication for this
may be that they often are understood as providers of data and functionality
and that the focus is on welldefine business processes.

Web services are in a way similar to whales: highly specialised and we expect
some kind of intelligence behind but we don’t know really what they are up
to. Structure services on the other hand are a bit like amoebas: they can be
everywhere, they are mobile and very flexible, but they are still a bit difficult to
interact with.

What we may need are services that help us to describe and define patterns
and that can be trained so they behave as we need it. The emerging applications
should be mobile and flexible.

A service oriented architecture based on concepts and patterns may support in-
dividual and social needs better than an architecture based on data or information
and functionality. It supports the verification and use of information in the context
of the concept. The emerging applications should be as small as possibel and as big
as needed. They belong to the user in a context and help to represent the user’s
concepts. These applications or parts of them should be easier to move between
different devices and could even run simultaneosly to both protect the content by
distributing it and to utilise the different capabilities of the different devices.

References

1. Lilia Efimova’s web log. Mathemagenic: learning and KM insights,
http://blog.mathemagenic.com/

2. Efimova, Lilia Thoughts on task-based view of knowledge work Mathemagenic:
learning and KM insights, 2004-07-26,
http://blog.mathemagenic.com/2004/07/26

3. de Moor, Aldo and Efimova, Lilia 2004. An argumentation analysis of weblog conver-
sations. Proceedings of the 9th International Working Conference on the Language-
Action Perspective on Communication Modelling (LAP 2004), Rutgers University,
The State University of New Jersey, New Brunswick, NJ, USA, June 2-3, 2004,
http://blog.mathemagenic.com/categories/phdNews/2004/05/13.html#a1204

4. Efimova, Lilia Mydreamwiki/weblog tool. Mathemagenic: learning andKMinsights,
http://blog.mathemagenic.com/2004/06/08.html#a1233

5. Anjewierden Anjo, Brussee, Rogier and Efimova, Lilia Shared conceptualisations in
weblogs. Mathemagenic: learning and KM insights,
http://blog.mathemagenic.com/2004/09/06.html

6. van Kesteren, Anne The perfect weblog system Anne’sWeblog aboutMarkup&Style,
http://annevankesteren.nl/archives/2004/08/weblog-system

7. Wiil, Uffe K., Hicks, David L. and Nürnberg, Peter J. An Agenda for Structural Com-
puting Research Proceedings of Metainformatics Symposium 2004, Lecture Notes in
Computer Science, 15-18 September 2004, Salzburg, Austria Springer-Verlag, Berlin

Blog Perspectives 219

8. Rubart, Jessica and Richter, Helge Flexible Notifications and Task Models for Co-
operative Work Management Proceedings of Metainformatics Symposium 2004, Lec-
ture Notes in Computer Science, 15-18 September 2004, Salzburg, Austria Springer-
Verlag, Berlin

9. Krestova, Svetlana and Nürnberg, Peter J. Multilingual Dictionary of Lexicogra-
phy Proceedings of Metainformatics Symposium 2004, Lecture Notes in Computer
Science, 15-18 September 2004, Salzburg, Austria Springer-Verlag, Berlin

10. A short, incomplete list of blog software and services Blogger (service):
http://www.blogger.com
Blojsom (software):
http://wiki.blojsom.com/wiki/display/blojsom/About+blojsom
Livejournal (service):
http://www.livejournal.com
Movable Type, TypePad (software, service):
http://www.movabletype.org/ Radio Userland (software):
http://radio.userland.com/
Wordpress (software):
http://wordpress.org/

11. Movable Type A Beginner’s Guide to TrackBack
http://www.movabletype.org/trackback/beginners/

12. Dervin, Brenda Sense Making
http://communication.sbs.ohio-state.edu/sense-making/default.html

13. My own blog to get started. Takeoff,
http://flyingdog.ruc.dk/blog/

14. About the motivation to use Blojsom Takeoff,
http://flyingdog.ruc.dk/blog/takeoff/?permalink=blojsom.txt

Author Index

Aedo, Ignacio 129
Almendros-Jiménez, Jesús M. 141
Atzenbeck, Claus 51

Blachogeorgakopoulos, Panagiotis 113

Coronato, Antonio 1, 179

d’Acierno, Antonio 1
D’Ambrosio, Diego 1
De Pietro, Giuseppe 1, 179
Dı́az, Paloma 129

Eldai, Omer Ishag 66

Gkotsis, George 113

Hampel, Thorsten 14
Hicks, David L. 66, 94

Iribarne, Luis 141

Kang, Myoung-Ah 160
Karousos, Nikos 108
Krestova, Svetlana 42

Lyon, Kirstin 85

Montero, Susana 129

Nürnberg, Peter J. 42, 51, 66, 85, 94

Pinet, François 160

Reich, Siegfried 206
Richter, Helge 32
Rubart, Jessica 32

Tochtermann, Klaus 192
Tsirakis, Nikos 108
Tzagarakis, Manolis 113

Ulbrich, Armin 192

Vaitis, Michail 113
Vigier, Frédéric 160

Wagner, Frank 212
Wiil, Uffe K. 66, 94

	Frontmatter
	Computer Aided Composition
	Supporting Tools for Designing-By-Contract in Component-Based Applications
	Access Rights -- The Keys to Cooperative Work/Learning
	Flexible Notifications and Task Models for Cooperative Work Management
	Managing Ontological Complexity: A Case Study
	Looking Beyond Computer Applications: Investigating Rich Structures
	Towards a Generic Building Block for Component-Based Open Hypermedia Systems
	Applying Information Visualisation Techniques to Spatial Hypertext Tools
	An Agenda for Structural Computing Research
	Assessing the Impacts of Open Hypermedia Problems on Structural Computing
	Structural Engineering: Processes and Tools for Developing Component-Based Open Hypermedia Systems
	A Semantic Representation for Domain-Specific Patterns
	Describing Use Cases with Activity Charts
	Spatial Constraint Modelling with a GIS Extension of UML and OCL: Application to Agricultural Information Systems
	Location and Tracking Services for a Meta-UbiComp Environment
	Applying Structural Computing Paradigms to Domain Analysis
	Content Engineering: Bridging the Gap Between Content Creation and Consumption
	Blog Perspectives

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

